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Abstract. The dynamics of discrete global modes in a toroidal plasma interacting with an
energetic particle distribution is studied, and in particular when the dynamics of the system
using the nonlinear and quasilinear descriptions are macroscopically similar. The dynamics can
be described with a nonlinear bump-on-tail model in a two-dimensional phase space of particles.
A Monte Carlo framework is developed for this model with an included decorrelation of the wave-
particle phase, which is used to model extrinsic stochastisation of the wave-particle interactions.
From this description, a quasilinear version of the model is also developed, which is described
by a diffusive process in energy space due to the added phase decorrelation. Due to the reduced
dimensionality of phase space, the quasilinear description is typically less computationally
demanding than the nonlinear description. The purpose of the studies is to find conditions when
a quasilinear model sufficiently describes the same phenomena of the wave-plasma interactions
as a nonlinear model does. Via numerical and theoretical parameter studies, regimes where the
two models overlap macroscopically are found. These regimes exist above a given threshold of
the strength of the decorrelation, where coherent phase space structures are destroyed on time
scales shorter than characteristic time scales of nonlinear particle motion in phase space close
to the wave-particle resonance. Specifically for the quasilinear model, a theoretical value of the
time scale of quasilinear flattening is derived and numerically verified.

1. Introduction
Wave-particle interaction plays an important role in plasma physics for heating with waves and
for transport caused by microinstabilities. Instabilities appear when the distribution function
in energy increases along the characteristic describing the wave-particle interactions. The
dynamics is either studied with a quasilinear approximation or with a fully nonlinear model,
and comparisons are made to evaluate the applicability of the quasilinear approximation. The
nonlinear bump-on-tail model for the modeling of discrete global modes was developed by Berk
et al [1, 2], and has been extensively studied [1–6] (to name a few references). A parameter
quantifying extrinsic stochastisation of the wave-particle interactions has been introduced to this
model. Above a certain threshold of this stochastisation parameter, the kinetic equation of the
wave-particle interaction can be replaced by a diffusion equation in particle energy, independent
of the wave-particle phase. Such a description, with a diffusion coefficient similar to the standard
quasilinear diffusion of weakly turbulent plasmas [7, 8], is identified as the quasilinear limit of
the nonlinear wave-particle interaction model.
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2. Model equations
2.1. Nonlinear Monte Carlo model
Based on an action-angle description of the guiding center Hamiltonian in an axisymmetric
toroidal system with slowly varying electromagnetic fields [9], it was shown by Berk, Breizman
and collaborators [1, 2] that the Alfvén eigenmode-particle system can be described in a region
of phase space locally around the wave-particle resonance using a one-dimensional bump-on-tail
model. Following these derivations, using proper variable substitutions, and adding an ad hoc
collision operator acting on the energetic particles, the wave-particle system can be reduced to
the following set of equations:

∂f

∂τ
+ u

∂f

∂φ
+ Re

[
Ae−iφ

] ∂f
∂u

=
df

dτ

∣∣∣∣
coll

, (1)

dA

dτ
= −

∫
dφdu f(φ, u, τ)eiφ − γdA, (2)

where f(φ, u, τ) is the near-resonance energetic (“bump”) distribution, (φ, u) is the particle
position-energy phase space, τ is a parametrization of the time, A(τ) is the complex amplitude
of the eigenmode (arg(A) − φ is the relative wave-particle phase), df/dτ |coll is the collision
operator acting on the bump distribution, and γd is an explicit wave damping rate, e.g. due to
interactions with a thermal background distribution of particles. Assuming that the amplitude
evolves much slower than the phase space evolution of particles and taking df/dτ |coll = 0, the
system approximately becomes a pendulum equation, with particles deeply trapped by the wave
field oscillating at a frequency ωB =

√
|A| and a trapped region within |u| <

√
2(|A| − Im[Aeiφ]).

In the absence of sources and sinks, applied by the conditions df/dτ |coll = 0 and γd = 0, the
total energy, expressed as

Utot =
|A|2

2
+

∫
dφ du f(φ, u, τ)u, (3)

is a conserved quantity of the wave-particle system. For this considered case, given an initial
low-amplitude perturbation of the eigenmode and a positive derivative of the particle distribution
with respect to energy around the wave-particle resonance, the evolution of the amplitude
perturbation becomes exponentially growing in time after some initial mixing of the phase
space distribution of particles [10]. The linear growth rate of the amplitude is given by
γL = π/2 × dF (u, 0)/du|u=0, where F (u, τ) =

∫
dφ f(φ, u, τ). In the nonlinear simulations

presented in this paper, a sinusoidal perturbation in φ is applied to the initial distribution
function, since an initial flat φ distribution is in unstable equilibrium, for which the dynamics
depend critically on statistical noise in the phase space distribution. An applied perturbation
makes the results less dependent on statistical fluctuations.

The quasilinear model is based on the assumption that wave-particle interactions are
extrinsically decorrelated, such that coherent interactions only occur on linear time scales. In
order to gradually go from the fully nonlinear description to the quasilinear one, a collision
operator of the form

df

dτ

∣∣∣∣
coll

= Dφ
∂2f

∂φ2
(4)

is introduced, where Dφ ≥ 0 is a constant, quantifying the strength of phase decorrelation of
the particles. This specific form of the collision operator linearly preserves the particle energy
distribution, which is typically not the case for a physical stochastisation process. However, its
energy conservation property facilitates the comparisons with quasilinear theory a lot, which is
explained in Sec. 2.2. Using the Kolmogorov forward equation, the system described by eqs. (1),
(2) and (4) can be expressed as a system of stochastic differential equations (SDEs) according to

dφk = uk dτ +
√

2Dφ dWτ,k, (5a)
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duk = Re
[
Ae−iφk

]
dτ, (5b)

dA = −

(∑
k

wke
iφk + γdA

)
dτ, (5c)

where the bump distribution f(φ, u, τ) is described by a set of discrete entities (markers) with a
phase φk, energy uk and weight wk, and Wτ,k are individual independent Wiener processes in τ .
An added common weight factor to all particles, such that wk → αwk, α > 0, can be transformed
away using the set of substitutions A→ α2/3A, τ → α−1/3τ , (u, γd, Dφ)→ α1/3(u, γd, Dφ).

A discrete time approximation is used for the numerical simulations. Assuming that the wave
amplitude evolves on time scales much longer than the individual φk and uk, A can be treated as
an independent variable in eq. (5b), splitting the complete system into individual two-dimensional
systems of SDEs (one for each particle), and two ODEs for the wave amplitude (the real and
the imaginary component). Using an Itō-Taylor numerical scheme with a strong convergence of
order 1.5 [11], the discrete stepping of particles in phase space is described by

∆φk =
√

2Dφ∆Wk + uk∆τ +
1

2
Re
[
Ae−iφk

]
∆τ2, (6a)

∆uk = Re

[
Ae−iφk

(
∆τ − i

√
2Dφ∆Zk +

1

2

[
1

A

dA

dτ
−Dφ − iuk

]
∆τ2

)]
, (6b)

where ∆Wk and ∆Zk are Itō integrals of the Wiener processes. These can be sampled as
∆Wk = ξ1,k

√
∆τ , ∆Zk = (ξ1,k + ξ2,k/

√
3)∆τ3/2/2, where ξi,k are independent normally

distributed random variables of unit variance and zero mean. For the finite time stepping of
the wave amplitude A, the standard fourth order Runge-Kutta method is used.

2.2. Quasilinear Monte Carlo model
The Brownian motion of the phase, in eq. (5a), induces a decorrelation of the wave-particle
interaction in eq. (5b). When this phase decorrelation is strong, the evolution of the energy may
be approximated by a random walk with a quasilinear diffusion coefficient, defined as

Du(u) =
A2Dφ

2(D2
φ + u2)

. (7)

This diffusion coefficient is similar to the standard quasilinear diffusion of a weakly turbulent
plasma [7,8]. Since the quasilinear wave-particle interaction is independent of φ and arg(A), the
dimensionality of particle phase space is reduced from two to one, and the amplitude is a real
quantity in the quasilinear description. The corresponding kinetic equation of the quasilinear
description is given by

∂F

∂τ
=

∂

∂u

(
Du(u)

∂F

∂u

)
= − ∂

∂u

(
dDu

du
F

)
+

∂2

∂u2
(DuF ) . (8)

The specific form of the added phase decorrelation preserves the total energy of the system
of the nonlinear model, as given by eq. (3). Assuming this is true also for the purely quasilinear
model, it is straightforward to derive the quasilinear amplitude equation from eqs. (3) and (8):

dA

dτ
= − 1

A

∫
du

dDu

du
F (u, τ)− γdA =

1

A

∫
du Du(u)

∂F

∂u
− γdA. (9)

On time scales much shorter than the time scale for quasilinear flattening of the distribution
(see eq. (20)) the distribution function evolves slowly, and can be approximated with a constant

Joint Varenna-Lausanne International Workshop 2014 IOP Publishing
Journal of Physics: Conference Series 561 (2014) 012019 doi:10.1088/1742-6596/561/1/012019

3



in time. Inserting this approximation into eq. (9) yields an effective growth rate of the wave
amplitude,

γeff =
Dφ

2

∫
du

dF0

du

1

D2
φ + u2

, (10)

that includes effects of a finite width of the energy distribution, which was not considered in the
derivation of γL in the nonlinear description.

The system of equations given by eqs. (8) and (9) can be written as a system of SDEs:

duk = −
A2Dφuk

(D2
φ + u2

k)
2

dτ +A

√
Dφ

D2
φ + u2

k

dWτ,k, (11a)

dA =

(∑
k

ADφwkuk
(D2

φ + u2
k)

2
− γdA

)
dτ, (11b)

and the 1.5 order strong Itō-Taylor numerical scheme [11] yields the following stepping algorithm
in u:

∆uk =
A

2

√
Dφ

D2
φ + u2

k

{
2∆Wk − Λkuk

(
∆W 2

k + ∆τ
)
− Λ2

k

(
D2
φ − 3u2

k

)(1

3
∆W 3

k + ∆Z+
k

)
+ Λ2

ku
2
k∆Z

−
k + Λ3

kuk
(
7D2

φ − 9u2
k

)
∆τ2 +

2

A

dA

dτ

(
∆Z−k + Λkuk∆τ

2
)}

, (12)

where ∆Wk = ξ1,k

√
∆τ , ∆Z±k = (ξ1,k± ξ2,k/

√
3)∆τ3/2/2, Λk ≡ A

√
Dφ/(D

2
φ + u2

k)
3, and ξi,k are

independent and normally distributed random variables of unit variance.
As apparent from eq. (10), the growth rate of the amplitude in the quasilinear model

theoretically coincides with the growth rate in the nonlinear model in the limitDφ → 0. However,
as Dφ approaches zero, the maximum allowed ∆τ for convergence of the numerical algorithm is
reduced. This limitation for low Dφ is not present in the nonlinear model. The first order term
in eq. (12) differs from the half order term with a factor ∼ ΛkDφ

√
∆τ ∼ A/D2

φ ×
√
Dφ∆τ at

most, which must be � 1 for good convergence.

2.3. Analytic solutions to the quasilinear model
Solving the system of equations of the quasilinear model, eqs. (8) and (9), is possible in principle
by first separating the spatial and temporal parts of the kinetic equation. The eigenfunction
solutions of the spatial part are integrals over parabolic cylinder functions. The non-trivial
eigenfunctions diverge as χ→ +∞ or χ→ −∞, which makes them impractical to use as spatial
basis functions for the distribution function. When inserting a general set of eigenfunction
solutions into the quasilinear amplitude equation, eq. (9), an infinite dimensional system of
equations results, which might also be impractical.

An alternative approach is to use an approximate form of the diffusion coefficient that is valid
on limited time scales. A model with a parabolic form of the diffusion coefficient,

Du(u) =

{
A2

2Dφ

(
1− u2

u2w

)
: |u| ≤ uw,

0 : |u| > uw,
(13)

where uw ∼ Dφ is the effective width of the diffusion in u, turns out to be practically soluble
from an analytical point of view. From now on, the diffusion coefficient in eq. (13) is referred to
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as parabolic diffusion, whereas the coefficient in eq. (7) is referred to as the Lorentzian diffusion.
Inserting the parabolic form of the diffusion coefficient into eq. (8) yields

∂F

∂τ
=

A2

2Dφu2
w

∂

∂x

((
1− x2

) ∂F
∂x

)
, |x| ≤ 1, (14)

where x ≡ u/uw. It should be noticed that the eigenfunctions of the right hand side are the
Legendre polynomials, which form an orthogonal set in |x| ≤ 1. Decomposing the distribution
function in the region |u| ≤ uw into Legendre polynomials according to

F (uwx, τ) =
1

uw

∞∑
n=0

Qn(τ)Pn(x), (15)

inserting into eqs. (14) and (9), and using the orthogonality property of the Legendre polynomials,
it can be shown that each Qn and the amplitude satisfy the ODEs

dQn
dτ

= − A2Qn
2Dφu2

w

n(n+ 1), (16)

dA

dτ
=

A

Dφuw

∞∑
n=0

Qn

∫ 1

−1
dx xPn(x) =

2Q1A

3Dφuw
. (17)

By solving the closed system of equations given by eq. (16) for n = 1 and eq. (17), and solving
eq. (16) for general n using the obtained A(τ), one finds the complete analytical solutions:

Qn(τ) = Qn(0)

(
η + ψ

η exp([η + ψ]τ) + ψ

)n(n+1)/2

, (18)

A2(τ) =
Dφu

2
wη(η + ψ)

η + ψ exp(−[η + ψ]τ)
, (19)

where η ≡ A2(0)/Dφu
2
w and ψ ≡ 4Q1(0)/3Dφuw.

One limitation of the parabolic diffusion model is that it only acts on the distribution function
within the region |u| < uw, whereas the Lorentzian diffusion model acts on the whole u space.
On time scales where regions |u| & uw of the distribution function are affected by diffusion in
the Lorentzian model, the numerical and analytical solutions are expected to diverge. One can
select uw such that the initial growth rates of the wave amplitude match in the numerical and
the analytical solutions. By doing this, one can obtain similar solutions of the two models on
time scales τ . τQL, where τQL is the characteristic time scale for quasilinear flattening of the
distribution function. Therefore, the analytical solutions can be used to obtain an analytical
expression for τQL.

The time scale of quasilinear flattening can be characterized as the time scale at which
∂F/∂u|u=0 is significantly reduced due to quasilinear diffusion. Only Pn for odd n contribute to
the derivative of the distribution function at the resonance. The decay rate of Q2n+1 is of the
order 2n2(η+ψ) according to eq. (18). Hence, the term with the slowest decay that contributes
to the derivative is Q1, which is then expected to be the dominant contribution to ∂F/∂u at
(u, τ) = (0, τQL). The analytical τQL can be defined as the time at which Q1(τ)/Q1(0) essentially
differs from unity. Setting this ratio e.g. to 1/e results in

τQL =
1

η + ψ

[
1 + ln

(
1 +

e− 1

e

ψ

η

)]
. (20)

Assuming that dF0/du ≈ dF0/du|u=0 on energy scales much larger than Dφ, and assuming
η � ψ (equivalent with A(0) � A(∞) − A(0), where A(∞) is the saturation amplitude of the
analytical model) a slightly simpler expression for τQL than in eq. (20) can be found, namely
τQL = γ−1

L [ς + ln(
√
γLD3

φ/A(0))], where ς = ln(3π
√

(e− 1)/8) ≈ 1.47.
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Figure 1. a) Evolution of the wave amplitude using the nonlinear (NL), the quasilinear (QL)
and the analytical model. b) Comparison between the Lorentzian and the parabolic diffusion
coefficient in the cases presented in (a). D0 ≡ A2/2Dφ. c – e) The distribution function around
the resonance at three chosen times. The distribution of the NL model is integrated over φ.

3. Results
3.1. Quasilinear flattening
Comparisons between the evolutions of the wave amplitude and of the energy distribution
functions for simulations of the nonlinear model (NL), the quasilinear (QL) and the analytical
model are presented in Fig. 1. An initial triangular bump distribution in energy is used, defined
as F0(u) = F0(0)(1 + u/ū) for |u| ≤ ū, and F0(u) = 0 for |u| > ū, which is chosen to minimize
possible effects from higher order derivatives of the energy distribution around the resonance.
Using eq. (20) it was found that γLτQL = 6.98 for the specific case in Fig. 1. Unlike the quasilinear
model, the immediately initial amplitude evolution of the nonlinear model is not exponential.
Rather, there is an initial phase mixing state, with a faster growth of the amplitude due to
the added sinusoidal perturbation in φ-space of the initial distribution function, as discussed in
Sec. 2.1. To resolve this discrepancy, the time is shifted for the nonlinear model, such that it
matches the wave amplitude of the numerical quasilinear model at τ = τQL. Then the distribution
functions of the three models can be compared at given times, which is done in Fig. 1.c – 1.e.

The saturation level of the analytical model is much lower than that of the nonlinear and
the quasilinear model. This is due to the fact that the wave can only exhaust energy from a
localized region |u| < uw around the resonance using the parabolic diffusion model. Although
differences are large between the analytical and numerical solutions during the saturation phase,
they approximately agree for times up to the analytical time scale of quasilinear flattening,
τQL (aside from the initial phase mixing state of the nonlinear solution), which can be seen in
Fig. 1.a. For τ > τQL, the exponential evolution of the wave amplitude gradually ceases for both
numerical solutions. This conclusion is consistent with the results presented in Fig. 1.c – 1.e.
For τ = 6/γL < τQL, the energy distribution deviates from the initial distribution with a few
percent at most. For τ ≥ τQL, deviations from the initial distribution start to become significant
around the resonance, which here corresponds to the process of quasilinear flattening.
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ū/(2
√
0.6Asat)

1.79
1.50
1.26

a) b)

Figure 2. a) The definition of the quantity ∆. Asat is the theoretical value of |A(τ)| for τ →∞.
b) The relative difference of ∆ between nonlinear simulations and corresponding quasilinear
simulations as a function of Dφ/

√
|A| at the end of the interval. A triangular initial energy

distribution is used, with a full width of 2ū, and γd = 0.

3.2. Comparisons between the nonlinear and the quasilinear model
In order to conclude in which parameter regimes the numerical nonlinear and the numerical
quasilinear model macroscopically agree, one has to find a quantity that primarily depends on
the nonlinear dynamics of the system and compare this quantity for a wide set of nonlinear and
quasilinear simulations. One nonlinear process is the saturation of the wave amplitude, which
can be characterized by a saturation time scale and a value of the saturated amplitude. The
latter is however trivial to determine in the presence of phase decorrelation. Turning off the wave
damping (γd = 0), the saturated amplitude corresponds to a state where the energy difference
of the initial particle distribution and a final state of a symmetric energy distribution around
the resonance is absorbed by the wave. In the presence of wave damping, the saturated state is
simply zero, since the chosen collision operator lacks sources.

The quantity that has been chosen for comparison is the saturation time ∆, here defined as the
time between the two states with amplitudes |A| = 0.1Asat and 0.6Asat (see Fig. 2.a). In Fig. 2.b,
the relative difference between ∆ using the nonlinear and the quasilinear numerical models is
shown. Effects of the width of the distribution function are studied by performing simulations
with different values of ū/

√
0.6Asat, which is the ratio between the initial full width of the particle

distribution in energy and the width of the trapped particle region by the wave field at the end
of the ∆-interval. The quantity on the x-axis of Fig. 2.b, Dφ/

√
0.6Asat, compares the bounce

time of particles deeply trapped by the wave field (ω−1
B = |A|−1/2, referred to as the nonlinear

time scale) with the time scale of phase decorrelation (D−1
φ ) at the end of the ∆-interval.

As shown in Fig. 2.b, the quasilinear model is able to predict the saturation time scale when
the decorrelation time is shorter or similar to the nonlinear time scale (Dφ/

√
0.6Asat & 1).

However, when the decorrelation time is long in comparison, e.g. when Dφ/
√

0.6Asat . 0.1,
the measured relative difference of ∆ is larger than 20%. The decrease of the relative error for
increasing decorrelation strength ceases for shorter or similar decorrelation times, which might
depend on numerical errors. From Fig. 2.b, one may also observe a better agreement between the
models for distribution functions with a wider initial distribution around the resonance relative
to the width of the trapped region, i.e. larger ū/(2

√
0.6Asat). One interpretation is that a large

fraction of the complete structure of the distribution function becomes nonlinearly displaced by
the wave field when the initial particle distribution is narrow, such that δf/f becomes large
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on short time scales. Another interpretation could be that the discontinuity of the triangular
distribution on the positive edge (at u = ū) becomes visible for the wave when the width of the
trapped region is similar to ū, which might strongly affect the nonlinear behavior of the system.

4. Conclusions
In this paper, a nonlinear Monte Carlo model and a corresponding quasilinear model for
describing the dynamics of discrete global modes interacting with energetic particles in a toroidal
plasma in the presence of phase decorrelation have been compared. This study is performed
mainly by computing macroscopic quantities in selected parameter regimes using a quasilinear
approximation and a fully nonlinear description. There exist parameter regimes where the
nonlinear and the quasilinear descriptions approximately coincide macroscopically. These regimes
are mainly when the time scale for the destruction of macroscopic phase space structures (due
to the added phase decorrelation) are much shorter than the characteristic time scale of phase
space evolution of particles around the wave-particle resonance. However, due to the reduced
dimensionality of phase space relative to the nonlinear model, there are certain phenomena
depending on nonlinear phase space structures that the quasilinear model cannot describe.

Two partly related phenomena common for both the nonlinear and the quasilinear descriptions
have been studied for comparison: quasilinear flattening (i.e., local flattening of the energy
distribution around the resonance due to quasilinear energy diffusion) and saturation time scales
of the wave amplitude in the presence of phase decorrelation. Analytical solutions to a problem
similar to the quasilinear description were derived to obtain a theoretical value of the time scale
of quasilinear flattening. When compared with numerical simulations using the quasilinear and
the nonlinear descriptions, they were found to approximately match the theoretical time scale,
both when looking at the deviations from an exponential growth of the wave amplitude and at
the flattening of the energy distribution.

The saturation time scale was studied by comparing the time difference (referred to as ∆)
between the states where the wave amplitude had reached 10% and 60% of the saturated
amplitude in the presence of phase decorrelation, using the nonlinear and the quasilinear
numerical model. It was found that the value of ∆ is similar for the two models when the phase
decorrelation is faster than the nonlinear bounce time (from the trapping of the wave field).
However, when the decorrelation time scale is reduced, the differences between the quasilinear
and the nonlinear model are significant. The energetic distribution of the presented numerical
models has a finite width in energy, which affects the macroscopic behavior of the system. Wider
initial distributions relative to the trapped particle region in the nonlinear model also give better
agreement with the quasilinear model in general. This can be explained by the fact that a large
fraction of the complete structure of the distribution function becomes nonlinearly displaced by
the wave field when the initial particle distribution is narrow relative to the trapped particle
region, such that δf/f becomes large on short time scales for these cases.
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