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Abstract. The Heisenberg chain with alternating site spins (S, σ) = (1, 1
2
) defines a realistic

prototype model admitting extra isotropic three-body exchange terms which drive the chain
into exotic quantum phases. In this paper, we focus on the non-magnetic part of the phase
diagram. Based on numerical density-matrix renormalization group and exact-diagonalization
calculations, we demonstrate that the nearest-neighbor three-body interaction stabilizes (i)
a critical spin liquid phase described by two Gaussian conformal theories as well as (ii) a
critical nematic-like phase characterized by dominant quadrupolar S-spin fluctuations. The
emergence of these phases reflects some specific features of the three-body terms such as the
promotion of local collinear spin configurations and the enhanced tendency towards nearest-
neighbor clustering of the spins.

1. Introduction
Competing higher-order exchange interactions have been identified as an excellent source of
exotic quantum effects and phases [1]. For instance, Heisenberg models with the additional
two-site biquadratic terms (Si · Sj)2 – such as the spin-1 bilinear-biquadratic chain [2] and
its higher-dimensional counterparts on square [3, 4], triangular [5, 6], and cubic [3] lattices –
constitute a class of widely discussed systems supporting rich phase diagrams.

In contrast, for the time being the role of the isotropic three-body exchange terms
(Si · Sj) (Si · Sk) +h.c. (|Si| > 1

2 , i 6= j, k; j 6= k) remains scarcely explored. On the theoretical
side, such terms have been primarily used as a tool for constructing various exactly-solvable
one-dimensional (1D) models [7, 8, 9, 10]. Some special effects of the isotropic three-body
exchange interactions in generic spin-S Heisenberg models have only recently been discussed
[11, 12, 13, 14]. On the experimental side, more convincing experimental evidence for three-body
exchange effects comes from inelastic neutron scattering measurements in the magnetic material
CsMnxMg1−xBr3 (x = 0.28) [15], CsMnBr3 being known as a nearly ideal spin-52 Heisenberg
antiferromagnetic (AFM) chain. The experimental results imply nearly equal strengths of both
the biquadratic and three-site terms, which are about two orders of magnitude weaker than the
principal Heisenberg coupling. In this material, the emergence of effective higher-order exchange
terms was attributed to the strong magenetoelastic forces [16]. Another source of three-body
exchange interactions could be the two-orbital Hubbard model, where similar terms appear in
the fourth order of the strong-coupling expansion [11].
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In the discussed systems, that are dominated by the Heisenberg coupling, the strengths of
both higher-order terms are controlled by one and the same model parameter, so that it might be
a challenge to isolate the effects resulting from three-site terms. In this connection, cold atoms
in optical lattices seem to offer a promising route. For instance, as demonstrated in Ref. [17],
the two-species Bose-Hubbard model in a triangular configuration can be used to generate
a wide range of Hamiltonian operators, including effective three-body interactions, resulting
from atomic tunnelings through different lattice paths. A general purpose of this paper is to
demonstrate that some conventional alternating-spin Heisenberg systems could provide another
promising route [18]. We concentrate on a prototype 1D model of this class, admitting extra
three-body exchange terms, defined by the Hamiltonian

HσS =
L∑
n=1

hn ≡
L∑
n=1

J1S2n ·(σ2n−1+σ2n+1) + J2 [(S2n ·σ2n−1) (S2n ·σ2n+1)+h.c.] , (1)

where L stands for the number of elementary cells containing two different spins (S > σ). In
what follows we use the standard parameterization of the coupling constants J1 = cos(t) and
J2 = sin(t) (0 ≤ t < 2π).

In view of the numerous experimentally accessible quasi-1D spin systems described by the
Heisenberg model with different pairs (S, σ) of alternating spins [19, 20, 21], the suggested model
defines a simple but realistic onset to explore the impact of three-body exchange interactions.
Note that for systems with σ = 1

2 the biquadratic terms reduce to bilinear forms [22, 23, 24]. The
following analysis, based on numerical density-matrix renormalization group (DMRG) and exact
diagonalization (ED) calculations, is concentrated on the non-magnetic part of the ground-state
(GS) phase diagram of HσS in the extreme quantum limit (S, σ) = (1, 12). Keeping up to 500
states in the last (seventh) sweep ensures in most cases good convergences (up to the largest
simulated system with L = 256) under open boundary conditions (OBC), with a discarded
weight of the order of 10−8 or better. A detailed description of the full GS phase diagram will
be presented elsewhere [25].

2. Classical states
To start with, let us briefly discuss the classical phase diagram of Eq. (1) including – apart
from the standard ferromagnetic (FM) and Néel-type ferrimagnetic (FiM) phases – a highly-
degenerate phase (D). These phases can be constructed from the three-spin GS configurations
of the local Hamiltonians hn. Indeed, suggesting S2n = S(0, 0, 1) =⇑, one finds the GS cluster
states |FM〉 =↑⇑↑ , |FiM〉 =↓⇑↓ , and |D〉L,R = (↑⇑↓, ↓⇑↑) respectively in the t intervals (3π4 ,

3π
2 ),

(−π
2 ,

π
4 ), and (π4 ,

3π
4 ). Remarkably, apart from the boundary points t = π

4 and 3π
4 , the classical

Hamiltonian hn supports only collinear GS spin configurations. Now, by fitting the directions
of the shared σ spins, we can use these cluster states as building blocks of global (L cell) spin
configurations. By construction, the obtained states correspond to local minima of the classical
energy. Obviously, for t ∈ (3π4 ,

3π
2 ) [t ∈ (−π

2 ,
π
4 )], the cluster state |FM〉 (|FiM〉) generates a

unique global configuration representing the classical FM (FiM) phase. On the contrary, for
t ∈ (π4 ,

3π
4 ) there exists a manifold of degenerate optimal states based on the cluster states

|D〉L,R and their reversed-spin counterparts. As there are two ways to attach a new block to a
given configuration, the degeneracy of the D phase is exponentially large (2L). The established
classical diagram was additionally confirmed by Monte Carlo simulations.

3. Critical spin-liquid phase (SL)
The DMRG analysis of the short-range (SR) correlations in open chains reveals in the interval
π
6 . t . π

2 a regular alternating-bond structure of the GS (and the lowest excited states)
characterized by different values of the SR correlators 〈σ2n−1 · S2n〉 = u and 〈S2n · σ2n+1〉 = v
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Figure 1. Numerical ED results (symbols) for the lowest excitation gaps in the L = 8 ring vs
t. FiM and D are abbreviations for the ferrimagnetic (Néel type) and the 2L-fold degenerate
classical phases, respectively. SL and N denote, respectively, the spin liquid and nematic-like
quantum phases discussed in the text. The lines are guides for the eye. Inset: Spins (s) and
momenta (k) of the related excitations.

(u < v). The uv (vu) “dimerized” GS |ΨL〉 (|ΨR〉) is stabilized in open chains with a σ spin
on the left (right) end of the chain and corresponds to a uv (vu) dimerization of the local
Hamiltonians hn. The established uv structure of the GS is strongly pronounced in the middle
of the SL region, where the values (u, v) ≈ (−1, 13) indicate the formation of nearly pure spin-12
states of the nearest-neighbor spins S2n + σ2n−1. Obviously, the established structural order
does not violate the translational symmetry of the Hamiltonian HσS by two lattice sites.

Both types of alternating-bond states are related by the site parity operation P: P|ΨL,R〉 =
|ΨR,L〉. As the symmetry P is not violated in finite periodic chains, we may expect, in particular,
two quasi-degenerate singlet states related to the combinations |Ψ±〉 = 1√

2
(|ΨL〉 ± |ΨR〉). As

seen in figure 1, a low-lying excited singlet state can be observed already in small rings (L = 8).
A similar tendency towards doubling of the spectrum can also be identified for some triplet and
quintet states in figure 2a. In fact, even in t regions with relatively large singlet gaps for small L
– like the region around t = 45◦ – the finite-size scaling (FSS) of the excitation gaps, figure 2b,
supports this tendency: in particular, the FSS implies an exponentially fast (with L) doubling
of the lowest singlet and triplet states. Due to strong boundary effects, the discussed doubling
in the lowest part of the spectrum remains invisible in open chains up to the largest (L = 256)
simulated system.

In figure 3a, we show DMRG results for the GS entanglement entropy S(L, l) of the open
alternating-spin chain at t = 45◦. The analytical result for this quantity in critical conformally-
invariant 1D systems reads [26, 27]

S(L, l) =
c

3η
ln

[
ηL

π
sin

(
πl

L

)]
+ const. (2)

Here l is the number of unit cells in the subblock (l = 1, . . . , L), c is the central charge, and
η = 1, 2 for periodic boundary conditions (PBC) and OBC, respectively. The extrapolation of
the numerical data for S(L,L/2) vs ln (2L/π) up to L = 256 suggests a critical behavior with
central charge c = 1, figure 3b. We observe two different branches of S(L, l) corresponding to
even and odd l. Similar even-odd oscillations have been originally reported in open spin-12 XXZ
chains, including the isotropic limit [28]. In this work, it was clarified that the alternating part
of S(L, l), decaying away from the boundary with a universal power law, appears as a result
of oscillations of the energy density. The latter oscillations were attributed to the tendency of
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Figure 2. (a) Numerical ED results for the low-lying (spin s = 0, 1, 2, and 3) excitation energies
of the periodic L = 8 chain at t = 63.4◦. The shaded symbols correspond to the lowest quasi-
degenerate pairs of singlet, triplet and quintet excitations. (b) DMRG results for the FSS of the
lowest singlet and triplet modes at t = 45◦.
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Figure 3. (a) Numerical DMRG results for the even- and odd-subblock GS entanglement
entropy of the SL state (t = 45◦) vs the number of subblock cells l. The dashed lines represent
the theoretical result, Eq. (2), with c = 1. (b) Extrapolation of the DMRG results for S(L,L/2)
vs ln(2L/π) at t = 45◦. The dashed line corresponds to S(L,L/2) with the central charge c = 1.

the critical system towards formation of local singlet bonds, combined with the strong tendency
of the end spins to form local singlets. To understand the even-odd cell modulation of S(L, l)
in the alternating spin chain, one can suggest a similar scenario, i.e., one may speculate that
the even-odd cell modulation of S(L, l) is related to the formation of local four-spin singlets.
However, unlike for the XXZ chain, the formation of local singlet states in the alternating spin
model is more complex as it includes, at least, four neighboring spins with two possible types of
uv modulation.

Assuming conformal invariance, additional characteristic properties of the non-magnetic SL
phase can be extracted from the FSS behavior of the GS and the lowest excited states. Numerical
simulations of periodic chains are hampered by the quasi-degeneracy of the GS, so that the
following analysis is performed under OBC. The expected tower of excited states related to
some primary operator is defined by [29]

∆n(L) ≡ En(L)− E0(L) =
πvs
L

(xs + n) + o(L−1), (3)

where n = 0, 1, 2, . . .. xs is the universal surface exponent related to the same operator, and
vs is the sound velocity. The exponent xs is known, in particular, for the energy states of the

isotropic spin-12 Heisenberg chain in the m sectors (x
(m)
s = m2, m = 1, 2, . . .), where m is the z

component of the total spin [30]. The Hamiltonian (1) respects the spin-rotation symmetry, so
that the above asymptotic expression, when used as a fitting ansatz, has to be supplemented by
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Figure 4. (a) FSS of the lowest triplet [(m,n) = (1, 0) and (1, 1)] and quintet [(m,n) = (2, 0)
and (2, 1)] gaps in (a) the alternating spin (1, 12) chain (DMRG, OBC, t = 45◦) and (b) in the

uniform (12 ,
1
2) chain with 2L sites (DMRG, OBC, t = 0◦). The dashed lines show the best fits

to the DMRG data (symbols) obtained by Eq. (4).

appropriate logarithmic terms [31].

In figure 4, we compare FSS results for the lowest two excitations in the triplet (m = 1) and
quintet (m = 2) towers of states of the HamiltonianHσS , Eq. (1), for two cases: (i) (S, σ) = (1, 12)

at t = 45◦ and (ii) (S, σ) = (12 ,
1
2) at t = 0◦. The fit of the reduced gaps L∆

(m)
n is performed by

the four-parameter ansatz

L∆(m)
n (L) = a(m)

n +
b
(m)
n

ln
(
L/ξ

(m)
n

) +
c
(m)
n

L
. (4)

For systems belonging to the Gaussian universality class – like the isotropic spin-12 chain in

the second case – the first fitting parameter a
(m)
n is expected to approach the exact result

a
(m)
n = πvs(m

2 + n)/2, which gives [m,n] ≡ a
(m)
n /a

(1)
0 = m2 + n. In fact, the performed fits

for the (S, σ) = (12 ,
1
2) chain give the numerical estimates [1,1]=1.99, [2,0]=3.99, and [2,1]=4.96,

which excellently reproduce the expected theoretical ratios. Moreover, a comparison of Eqs. (3)

and (4) implies the relation a
(1)
0 = vs/2, which gives an estimate for vs deviating only by about

0.6% from the exact result π/2. For the alternating-spin chain, similar fits give the numerical
estimates vs = 0.38, [1,1]=2.11, [2,0]=4.44, and [2,1]=5.69. In spite of the larger deviations from
the theoretical results for [m,n], the observed structure of the lowest-lying part of the spectrum
in the alternating-spin model remains close to the structure in the reference spin-12 Heisenberg
chain [32].

The established one-to-one mapping of the lowest-lying excitations of both models suggests
similar critical properties. Since the unit cell of the reference spin-12 model contains two
equivalent lattice sites, under PBC this means a doubling of the spectrum and, in particular, two
equivalent critical modes. This explains the discussed doubling of the lowest-lying excitations
in the alternating-spin (1, 12) ring. Thus, both the GS entanglement entropy as well as the FSS
properties of the SL phase point towards a Gaussian type critical behavior. Since the alternating-
spin (1, 12) ring exhibits two equivalent critical modes, the SL state may be interpreted as a
critical spin-liquid phase described by two Gaussian conformal theories associated with these
modes. Similar critical phases have been studied in some exactly solvable models, including
spin models with extra three-body exchange interactions. In particular, there is an exactly-
solvable alternating-spin (S, σ) model [33, 34] closely related to the generic model discussed in
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Figure 5. (a) Numerical ED results for the energy spectrum of the alternating-spin (S = 1,
σ = 1

2) ring (L = 8, t = 110◦) vs St(St + 1), where St is the total spin. The lowest multiplets
in the even St sectors (filled circles) form a tower of states with energies E(S) ∝ St(St + 1).
The dashed line is a guide for the eye. Inset: Cartoon of the suggested nematic-like state in
the N sector. The ellipses denote the local nematic states |u〉 =

∑
α u

α|α〉, where u is a unit
real vector and |α〉 (α = x, y, z) is the vector basis of the spin-1 operator S. (b) FSS of the
lowest quintet gap (t = 110◦, DMRG, OBC). The dashed line shows the optimal fitting ansatz
∆(L) = a0 + a1/L+ a2/L

2.

this work at the point t = 45◦. In fact, the difference between both models is reduced to an
additional FM exchange term (hσσn = J3σ2n−1 · σ2n+1, J3 < 0) in the exactly solvable model.
Assuming that hσσn represents an irrelevant operator (in a renormalization group sense), it may
be speculated that both models exhibit similar critical properties. In particular, for the exactly
solvable (S, σ) model, it has been predicted [33] that the critical behavior can be described by an
effective central charge which is the sum of the central charges related with two critical modes,
t.e., ceff = 3σ/(σ + 1) + 3(S − σ)/(S − σ + 1). In the special case (S, σ) = (1, 12) this gives
ceff = 1 + 1 = 2, which coincides with the expected critical behavior of the SL phase.

4. Nematic-like phase (N)
The numerical ED results for the low-lying excitations in the periodic L = 8 chain, figure (1),
point towards a different non-magnetic GS in the interval π

2 . t . 2π
3 . Indeed, in the vicinity

of t = π
2 the lowest quintet excitation is strongly softened and becomes the first excited state

up to t ' 2π
3 . DMRG results for somewhat larger periodic systems (up to L = 28) confirm

the picture with a lowest quintet excitation [35]. Further information about the non-magnetic
state can be extracted form figure 5, showing ED results for the excitation spectrum of the
same system at t = 110◦ in different total-spin (St) sectors. An obvious feature of the presented
spectrum is the established tower of well-separated lowest multiplets containing only even St
sectors. Furthermore, the energies in the tower scale as E(S) ∝ St(St + 1). The observed
structure is known as a fingerprint of the spin quadrupolar (i.e., nematic) order [36], unlike the
Anderson tower – a characteristic of the Néel order – containing all St sectors [37]. In fact,
Anderson towers of states have been observed even in some finite isotropic spin-S chains and
magnetic molecules [38, 39, 40], including spin-12 Heisenberg chains [41]. In the same spirit, we
consider the specific structure in figure 5a as a fingerprint of a non-magnetic state with dominant
quadrupolar spin fluctuations. The FSS of the quintet excitation gap ∆(L) ∝ 1/L, figure 5b,
pointing towards a gapless N state, is consistent with the above suggestion. Finally, in the
Inset of figure 5a we show the cartoon of a tentative nematic-like state built from the on-site
nematic states |u〉 of the spin-1 operators, which respects both the established structure of the
spectrum as well as the DMRG data implying extremely weak nearest-neighbor Sσ correlations
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(|〈S2n · σ2n±1〉| < 0.07) in the whole region occupied by the N phase.

5. Conclusion
It is worth emphasizing that the establishment of the discussed states is directly related to
some peculiarities of the dominating three-body interaction such as the maintenance of collinear
classical states and the promotion of nearest-neighbor spin clustering. As with the bilinear
interaction in Eq. (1), in the N phase (J1 < 0) its role is to weaken the AFM nearest-neighbor
Sσ correlations, while in the SL phase (J1 > 0) it enhances the tendency towards the formation
of spin (S−σ) states of the neighboring spins S2n +σ2n±1. In this sense, an analogue of the SL
state in spin-S AFM chains with extra three-body terms is the recently predicted fully-dimerized
(Majumdar-Ghosh type) GS [11]. Obviously, the alternating-spin systems suggest more variety
in this direction. Finally, it may be expected that most of discussed effects of the three-body
exchange interaction persist in higher space dimensions. We believe that the presented results
will encourage future search for real systems with pronounced three-body exchange effects.
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