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Abstract. This paper validates lumped models of an asymmetric bistable MEMS electrostatic
energy harvester against measurements. A conventional model of constant damping coefficient
turns out to be ineffective in predicting or reproducing the device response. This shortcoming
is demonstrated by the effective damping coefficient obtained from fits to experimental results
being far from constant under varying operating conditions. Therefore, two different nonlinear
models of the damping force in polynomial form are introduced and investigated. We find
that the experimental results are well reproduced over the entire range of measured acceleration
amplitudes by modeling with a phenomenological nonlinear damping force which is a high-order
polynomial in the velocity.

1. Introduction

In designing a vibration energy harvester, it is challenging to make the generator adapt to the
wide range of ambient vibration spectra. Nonlinearity of suspensions has been exploited to
extend the working frequency range of the energy harvesters. In this approach, advantage is
taken of the nonlinear dynamical behavior resulting from softening spring, hardening spring or
bistable character of the system stiffness [1-3]. For example, an electrostatic MEMS device with
an asymmetric bistable suspension showed an experimental bandwidth up to 715 Hz centered
at 700 Hz [4]. In [5], 2.5 times wider bandwidth was achieved in a bistable electromagnetic
generator than in a monostable one. It can often be difficult to obtain close agreement with
experimental responses when modeling these bistable devices.

Damping is important to the bandwidth because it strongly affects the jump frequencies
in frequency sweeps [6]. Therefore, understanding the behaviour of damping against a variety
of working conditions is needed for device performance prediction. In this work, a bistable
electrostatic energy harvester is characterized and modelled. The common model with a linear
damping force [7] misses essential physics in the device. Motivated by this, we introduce instead
nonlinear damping-force models in the form of polynomials in velocity and displacement. We
have investigated to which degree these different models of parasitic mechanical damping result in
simulated responses that agree with experiments on an asymmetric, bistable MEMS electrostatic
energy harvester.
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Figure 1. Schematic drawing of the bistable Figure 2. A corner of the device with a
electrostatic energy harvester.  The two nonlinear spring and a part of transducer 2.
capacitive transducers have different initial Inset: drawing of the nonlinear spring yo =
overlap areas. 42 pm and length L = 1660 pm

2. Device Description and Characterisation

2.1. Bistable design of an electrostatic energy harvester

The harvester has a proof mass suspended by four springs as shown in figure 1. Taking advantage
of the available space, two transducers, one on each side of the proof mass, are included in the
generator. To obtain the bistable properties, the springs are designed to have a curved shape as
shown in figure 2. The S-shaped springs have an initial displacement yq at the guided ends. The
spring force vs. displacement curve, obtained by fitting the modeling to measurements, is shown
in figure 3. For small displacements, the springs behave linearly around the 1% stable position at
0. For further displacement in the positive direction, the spring is stiffer (or hardening) which is
mainly due to tension. In the reverse direction, the springs are partly in compression resulting
in a stiffness reduction or softening effect over part of the displacement range when some of
the elastic energy is released. Decreasing the displacement from zero, the stiffness continues to
decrease and reaches the instability point at the displacement of -30 pm and then the stable
point at the displacement of -60 pm.
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2.2. Characterisation method and results

For characterisation purposes, an external DC voltage is used for biasing of the device, a chirp
excitation is taken as the input vibration source while the outputs of the generator are directly
connected to resistive loads Ryq, Ryo at transducer 1 and transducer 2 respectively. The device is
first characterized at several low acceleration amplitudes around 0.01 g to yield linear responses.
Then, parameters such as the linear stiffness ki, damping coefficient b, parasitic capacitance
C)p and load capacitance Cf, are determined from output voltage information, i.e. the resonant
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Figure 4. Output voltage at transducer
2 for acceleration amplitude of 0.01 g (linear
regime) and bias voltage of 30 V, 20 V' and
10 V' (top to bottom)

Figure 5. Output voltage at transducer
2 for acceleration amplitude of 0.28 g¢
(nonlinear regime) and bias voltage of 20V.

frequency fo = 52 = % % and the quality factor Q) = g—of = "¢, where Af is the bandwidth
of the response. Next, in a range of higher acceleration amplitudes from 0.1 g to 0.3 g causing
strong nonlinear effects, the higher-order stiffness parameters are obtained by fitting the output
response from the device model with results from measurement. In this procedure, the previously
established linear parameters are unchanged. The mass m and the dominant capacitor Cy are
calculated using the layout dimensions.

The parameters of the device are shown in Table 1. The linear behaviour of the generator is
presented in figure 4 while the nonlinear one is shown in figure 5. As can be seen in the linear
regime, the modeling results and experimental data are close with a small deviation far from the
resonant frequency. The small deviation is due to noise in the measurement system. However,
in the nonlinear regime, the amplitude of the voltage curve can only be fitted over a limited
frequency range. The jump-down frequency is far from the observed value in the experiment.
The same phenomenon was also observed for nonlinear piezoelectric energy harvester in [6].

The reason for this mismatch is that the linear damping is retained in our model for the
nonlinear regime while in reality the situation is more complex. Experimentally this explanation
is supported by the observation that the coefficient of the linear damping model needs to be
adapted to the operation condition, i.e. acceleration amplitude and bias voltage, in order to
reproduce the experiment results. This will be discussed in the next section.

3. Nonlinear Damping and Modeling
Figure 6 shows the effective linear damping value fitted to reproduce the experimental results
for different conditions of the acceleration amplitude and the bias voltage. The effective linear
damping is approximately linearly increasing when increasing the acceleration amplitude from
0 to 0.16 g and relatively constant beyond 0.16 g. We note that the effective damping curve
depends on bias voltage, and that in particular the 30-V curve distinguishes itself from the 10-V
and 20-V curves. We interpret this voltage dependence as a signature of inaccuracies in the
representation of electrical damping which have little effect at 10-V and 20-V bias. We therefore
conduct the remaining analysis at 20-V bias.

To describe the damping force that can give rise to effective damping coefficients as shown in
figure 6, we introduce two models of the nonlinear damping force. One is a high-order polynomial
in velocity and one is a third order form which also has displacement dependence:
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Table 1. Bistable Electrostatic Energy Harvester Parameters
Notation Description Value Unit
b Linear damping coefficient 2.7x1074 Ns/m
m Mass 15.18 mg
Ky Linear stiffness 622 N/m
ki—o.7 Nonlinear stiffness 2.96x107 , 2.8x10*! | -4x10*  Nm™
1.06x10%, 1.36x10%3, 4.2x102°
Cs,C3 Transducer dominant capacitance 7.07, 1.75 pF
C’; CS Transducer parasitic capacitance  14.5, 12.5 pF
Ct,C3 Parasitic load capacitance 23, 8 pF
R;i1,Rro Load resistance 20.5, 20.5 MQ
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Figure 6. Effective damping coeflicient

Figure 7. Nonlinear damping force obtained
extracted from measurements

from parameter fit, compared to linear damper.

N
Fnl,damp (517) = bz + Z b2n+1 (j:)2n+1

n=1

(1)

Fnl,damp (.%', I’) = b.if@' + bgo ($)3 + 1)321‘2.%" (2)

where b3 = 0.234N(s/m)3, bs = —69.26N(s/m)>, by = 8.73 x 103N(s/m)7, by = —4.98 x
10°N(s/m)?, b1 = 1.06 x 10’N(s/m)! and bzp = 0.274N(s/m)?, and b3z = —1.24 x 10"Ns/m?3.

The form in (2) has been adopted from the analytic work on modeling of the nonlinear
damping in a micromechanical oscillator in [8]. The high-order polynomial for the purely
velocity-dependent nonlinear damping in (1) is mathematically motivated by the need capture
a wide range of conceivable function forms. The damping force resulting from a fit to (1) is
presented in figure 7 and is very different from the simple linear model F' = bz. The slope change
in the force-velocity relation is made possible by using a 11*" order of polynomial. This form is
able to reproduce the experimental results over a wide range of acceleration amplitudes as shown
by the agreement with the experimental results in figure 8. The form (2) gives significantly worse
fits as seen from the mismatch in the responses already at moderate acceleration amplitudes,
i.e. above 0.19 g, in figure 9.

It is not clear what is the mechanism behind the nonlinear damping. However, this device
has a low linear damping, i.e. @ =~ 350, due to the large gap of 500 um between the mass
and the substrate, and due to the even larger distance to the lid. Thus, gas flow in the finger
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Figure 8. Output of transducer 2 with Figure 9. Output of transducer 2 with

11*" order polynomial damping force for third-order velocity- and displacement-
acceleration amplitudes of 0.28 g, 0.25 g, dependent damping force for accelera-

0.19 g, 0.1 g (left to right), bias voltage tion amplitudes of 0.22 g, 0.19 g, 0.1 g
of 20 V. (left to right), and bias voltage of 20 V.

structure is important for the damping, and could potentially include nonlinear effects at large
displacements, which cause the gas volume within the finger structure to change significantly.

4. Conclusion

This paper investigated the behaviour of a bistable electrostatic energy harvester. It was
demonstrated that the model of linear damping is not enough to reproduce the frequency
response of this kind of device in the nonlinear regime. A systematic experiment was set up and
revealed the dependency of the effective damping coefficient on excitation level and bias voltage.
The bias-voltage dependence was used to indicate at which bias voltages one could expect
inaccuracies in the electrical damping model to be insignificant for the mechanical damping
estimates. Two different nonlinear damping models were fit to the experiment. A high-order
expansion in velocity could successfully reproduce the experimental results. While this purely
mechanical nonlinear damping can explain the device behavior as a function of acceleration
amplitude, a physical explanation of the nonlinear damping is yet to be established and is a
matter for further investigation.
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