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Abstract. This paper outlines a mathematical framework to determine the upper bound on 

extractable power as a function of the forcing vibrations. In addition to determining the upper 

bound on power output, the method described provides insight into the dynamic transducer forces 

required to attain the upper bound. This relationship, between input vibration parameters and 

transducer force gives a critical first step in determining the optimal transducer architecture for 

a given vibration input. The method developed is applied to two specific vibration inputs; a single 

sinusoid, and the sum of two sinusoids. For the single sinusoidal case, the optimal transducer 

force is found to be that produced by a linear spring, resonant with the input frequency, and a 

linear viscous damper, with matched impedance to the mechanical damper. The solution to this 

first case was previously known, but has been used here to validate the methodology.  The 

resulting transducer force for the input described by a sum of two sinusoids is found to be 

inherently time dependent. This time dependency shows that an active system can outperform a 

passive system.  Furthermore, the upper bound on power output is shown to be twice that 

obtainable from a linear harvester centred at the lower of the two frequencies.  

1.  Introduction 

     Much recent work in vibration energy harvesting has focused on structure and transducer designs to 

improve power output from vibration sources that are not modeled as a single sinusoidal input.  Much 

of this work has investigated the use of nonlinearities as a way to increase energy output [1-4]. These 

nonlinearities are usually of the form of a nonlinear spring, such as a Duffing oscillator.  These works 

give useful insight to the potential uses of nonlinearities for harvesting from complex vibration inputs. 

However these works do not give a clear relationship between the parameters that define the input 

vibration and the optimal transducer dynamics. 

Other researchers have taken the opposite approach, starting with the vibration excitation and 

investigating the optimal transducer architectures to extract the maximum power.  Daqaq et al. [5]  

showed that for Gaussian white noise the energy generation was not a function of the transducer’s 

potential function. Halvorsen et. al. [6] proved that for an input described by a single frequency harmonic 

(i.e a single sinusoid) when the proof mass is subjected to viscous damping, the optimal transducer 

dynamics are those of a velocity damped resonant generator (VDRG) [7].  In both cases, the results are 

limited to very simple and specific types of forcing vibrations. 

Continuing along a similar pathway, this work will present a method to find the unconstrained and 

globally optimal relationship between the input vibration, and force that must be produced by the 

transducer. This relationship will also define an upper limit for power generated for a given vibration 

PowerMEMS 2014 IOP Publishing
Journal of Physics: Conference Series 557 (2014) 012020 doi:10.1088/1742-6596/557/1/012020

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

input. This framework will then be applied to two case studies, a single sinusoid and the sum of two 

sinusoids. 

2.  General Model 

     A simple model for a kinetic harvester with a generic transducer force FT that acts on the proof mass 

is shown in Figure 1. This generic transducer may contain both energy dissipative elements for power 

generation as well as energy conservative restoring elements. In general, the system is subject to a 

forcing function F(t). The inherent mechanical losses that are found in any real system are approximated 

by a linear viscous damper described by a single coefficient bm. This single degree of freedom system is 

characterized by a single displacement x. If the system is excited through base excitation, as is the normal 

case for an inertial generator, then F(t) would be the mass (m) multiplied by the base acceleration A(t). 

In this case the displacement x is the relative distance between the proof mass and the base. The system 

schematic as well as its governing equations are shown in Figure 1. 

 

 

𝑚𝑥̈ + 𝑏𝑚𝑥̇ + 𝐹𝑇 =  𝐹(𝑡)                  (1) 

𝑥̇1 = 𝑥2                        (2) 

𝑥̇2 =
1

𝑚
(−𝑏𝑚𝑥2 − 𝐹𝑇 + 𝐹(𝑡))          (3) 

Figure 1. (a) A generic inertial generator characterized by a single displacement x. Here FT 

represents the force produced by an unknown transducer architecture. bm is the coefficient that 

characterizes the system’s linear viscous damping due to inherent mechanical losses of the system. 

(b) Governing equations for the generic inertial generator.  

 

An energy balance of the system is used in order to find an expression for the energy generated by 

the transducer as a functison of the input. By examining the energy balance of the system in steady state 

we can neglect the kinetic energy of the mass as well as the possible potential energy stored in the 

transducer. This is due to the fact that these energy storage elements are restorative, thus they do not 

represent a net energy input or output to the system while it is in steady state.  The energy that can be 

generated as a function of system parameters and input is given in (4):  

 𝐸𝑔𝑒𝑛 = ∫[𝐹(𝑡)𝑥2 − 𝑏𝑚𝑥2
2] d𝑡  (4) 

For more generalized results we can look at the square of the power generated to examine a 

continuous positive definite functional, thereby allowing us to find the critical points in the magnitude 

of the energy generated. 
 𝐽 =  ∫[𝐹(𝑡)𝑥2 − 𝑏𝑚𝑥2

2]2d𝑡  (5) 

 

     If the velocity of the proof mass x2 is treated as the control parameter, the critical points of the 

functional, which represents the energy generated by the transducer, can be found through the stationary 

condition of the Euler-Lagrange equation [8]. Taking the derivative of I, the integrand of (5), with respect 

to x2 and solving for x2 yields three optimal velocity paths shown in Table 1.  Here ⋆ denotes the critical 

path with respect to the energy generated. These three relationships for 𝑥2
⋆ represent the critical velocity 

paths, given a vibration input F(t) to the system that will result in a minimum or maximum energy output. 

The second derivative determines if each solution is a maximum or minimum.  By substituting the 

optimal velocity relationships into the governing differential equations (2) – (3), an expression for the 

displacement of the proof mass x1 as well as the transducer force FT can be expressed as a function of 

the system properties and the input vibration force.  A summary of these solutions is given in Table 1, 

which shows the optimal velocity paths, position paths, and transducer forces required to produce those 

paths. 

(a) (b) 
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Table 1. Summary of critical path relationships for a general input.  

Critical Velocity Path Critical Positon Path Critical Transducer Force Type 

𝑥2
⋆ =

𝐹(𝑡)

2𝑏𝑚

 𝑥1
⋆ =  ∫

𝐹(𝑡)

2𝑏𝑚

d𝑡 𝐹𝑇
⋆ = −

𝑚𝐹̇(𝑡)

2𝑏𝑚

+
𝐹(𝑡)

2
 

Maximum 

𝑥2
⋆ =

𝐹(𝑡)

𝑏𝑚

 𝑥1
⋆ =  ∫

𝐹(𝑡)

𝑏𝑚

d𝑡 𝐹𝑇
⋆ = −

𝑚𝐹̇(𝑡)

𝑏𝑚

 
Minimum 

𝑥2
⋆ = 0 𝑥1

⋆ = 0 𝐹𝑇
⋆ = 𝐹(𝑡) Minimum 

3.  Model Applied to a Single Sinusoid Input 

     It is difficult to see the relevance of the equations in Table 1 in their general form. To help illustrate 

these relationships a simple example of a single frequency sinusoidal input will be examined. As the 

solution for this example is known, it further serves to validate the method.  We will look at the 

relationship that maximizes the energy output of the system. 

For the maximum power condition 𝑥2
⋆ =

𝐹(𝑡)

2𝑏𝑚
, letting  𝐹(𝑡) = 𝐴 𝑚 𝑠𝑖𝑛(𝜔𝑡) results in the following 

relationships: 

 𝑥1
⋆ =  −

𝐴 𝑚

2𝑏𝑚𝜔
cos(𝜔𝑡)   (6) 

  𝑥2
⋆ =

𝐴 𝑚

2𝑏𝑚
sin(𝜔𝑡)   (7) 

 𝐹𝑇
⋆ =  −

𝐴 𝜔 𝑚2

2𝑏𝑚
cos(𝜔𝑡) +

𝐴 𝑚

2
sin(𝜔𝑡)  (8) 

Substituting for 𝑥1
⋆ 𝑎𝑛𝑑 𝑥2

⋆ yields: 
 𝐹𝑇

⋆ = 𝜔2𝑚 𝑥1 + 𝑏𝑚𝑥2  (9) 

The minimum power conditions will not be further investigated as they are not relevant to the goal 

of maximizing extracted power from a vibration source.  Equations (6) – (9) can be interpreted as 

follows:  the optimal transducer model is a linear spring (𝑘 = 𝜔2𝑚) and a linear viscous damper which 

represents an electromechanical transducer. The constant of the linear spring is found to be resonant 

with the vibration input and the impedance of the electrical damper is found to be matched to the 

impedance of the mechanical damper bm.  This result is widely known and has been previously reported 

[6-7].  Thus, the application of this framework yielded the known optimal transducer architecture, 

without placing any a priori assumptions on the form of the transducer.  

4.  Model Applied to a Multiple Sinusoid Input 

     A source consisting of two sinusoids at different frequencies is a common vibration input. This type 

of vibration occurs in rotating machinery where two unbalanced masses rotate at different rates fixed 

relative to one another or in a system where multiple harmonics of a structure are well represented. 

The RMS power output scales with A2 for the standard linear system. Thus, the case where the 

amplitudes of the two sinusoids are equal will be examined. In the case where one sinusoid has an 

amplitude much greater than the other, it is reasonable to assume that the maximum power generation 

will be achieved by creating a linear harvester tuned to the frequency corresponding to the maximum 

value of A2/ω. In the case where the two sinusoids are of similar, but different amplitudes, the following 

analysis is relevant.  The expression for this double sinusoidal input is given as 𝐹(𝑡) =

𝐴 𝑚 (sin(𝜔𝑡) + sin(𝑛𝜔𝑡)). Here, n ∈ (0 ∞) represents the multiple difference between the two frequency 

components. 

Examining now only the vibration input which results in the maximum energy output, the optimal 

velocity signal for an input of two sinusoids is obtained in (10). 

 𝑥2
⋆ =

𝐴 𝑚

2𝑏𝑚
(sin(𝜔𝑡) + sin(𝑛𝜔𝑡))   (10) 
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Using the equations in Table 1, the relationships for the optimal position path and corresponding 

transducer force to achieve the velocity response as shown in (10) can be written as: 

 𝑥1
⋆ =  −

𝐴 𝑚

2𝜔𝑏𝑚
(cos(𝜔𝑡) +

1

𝑛
cos(𝑛𝜔𝑡))   (11) 

 𝐹𝑇
⋆ =

𝐴 𝑚

2
(𝑠𝑖𝑛(𝜔𝑡) + 𝑠𝑖𝑛(𝑛𝜔𝑡)) −

𝐴 𝜔 𝑚2

2𝑏𝑚
(𝑐𝑜𝑠(𝜔𝑡) + 𝑛𝑐𝑜𝑠(𝑛𝜔𝑡))  (12) 

Substituting (11) and (10) for x1 and x2 into (12), where available, yields: 

 𝐹𝑇
⋆ = 𝑏𝑚𝑥2 + 𝜔2𝑚 𝑥1 + 𝑇𝐷   (13) 

where TD is the time dependent component of the transducer force that cannot be directly substituted 

for by the systems states x1 and x2. 

 𝑇𝐷 =
𝐴 𝜔 𝑚2

2𝑏𝑚
(

1

𝑛
− 𝑛) cos(𝑛𝜔𝑡)   (14) 

The time dependent component of the transducer force shows that the true unconstrained optimal 

transducer force for an input vibration of this form cannot be realized with a passive system.  Thus, in 

principle an active system can outperform a passive system of any type, linear or non-linear. However, 

this would assume that the time dependent restoring force implemented is conservative. 

An energy balance is used to determine the nature of the time dependent force. It must be determined 

if the force does work, adding energy to the system over time, takes energy from the system, or does no 

net work on the system. The net energy into the proof mass from the time dependent force can be 

calculated by integrating the force over the displacement for a period T of the entire signal. Using 

equations (10) and (14) yields: 

 𝐸𝑇𝐷 (
2𝜋

𝜔
𝜅) =

𝐴2𝑚3(1−(−2+𝑛)𝑛−𝑛(1+𝑛)Cos[2𝜅(−1+𝑛)𝜋]+(−1+𝑛2) cos(2𝜅𝑛𝜋)2+(−1+𝑛)𝑛 cos(2𝜅(1+𝑛)𝜋))

8𝑏2𝑛2   (15) 

where κ is an integer value such that 𝑛 ∗ 𝜅 ∈ ℤ.  The total period for any input of this form is T=2π/ω κ. 

For the constraints of 𝜅 ∈ ℤ and 𝑛 ∗ 𝜅 ∈ ℤ, (15) reduces to zero. This shows that the time dependent 

force acts as a conservative element, not doing any work to the system over time. The upper limit for 

energy output from the optimal transducer can be shown analytically. This can be accomplished in a 

similar manner to the derivation of the average power output for the single sinusoid case. Knowing that 

from the result of (13) and (15) the power output from the transducer is dissipated by the force of a linear 

viscous damper, the instantaneous power dissipated through this element can be written as: 

 𝑃 = 𝐹 ∗ 𝑣 = 𝑏𝑚𝑥2
⋆2

   (16) 

Here 𝑥2
⋆ is the optimal velocity shown in (10).  Integrating the instantaneous power output over time 

yields the total energy generated by the transducer for all 𝑛 ∈ (1, ∞).  

 𝐸𝑛 =  
𝐴2 𝑚2𝑇

4𝑏𝑚
    (17) 

Note that for all n ≠ 1, the rms value of the excitation force is 𝐴𝑚.  However, for the special case in 

which n = 1, the rms value of the excitation force is √2𝐴𝑚, and thus the upper bound on the energy 

generated would be double that shown in (17).  However, if the rms value of the driving force is 

normalized to 𝐴𝑚 for the special case of n = 1, (17) will still hold.  The result is that the upper bound 

on power output is not a function of n.  Intuitively this means that if the transducer force given by (12) 

and (13) can be generated, all of the power from both sinusoids could, in theory, be captured. 

In order to gain additional insight into (17) a numerical study was performed in which the energy 

output over a sufficiently long period was measured for various values of n.  The output of this study is 

shown in Figure 2. In one case, the optimal transducer force is applied to the proof mass.  In the second 

case, the system is characterized by a linear oscillator whose resonance is the lower of the two 

frequencies present in the forcing vibrations.  The output is normalized to the energy generated by either 

system at n = 1.  As n deviates from 1, the power output from the linear system quickly drops to ½.  

However, the power output from the optimal system remains constant at 1. 
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Figure 2. Numeric simulations of the energy output of the optimal transducer as compared to a linear 

harvester. The energy production has been normalized by the energy output of both systems at n = 1. 

5.  Conclusion 

This paper has outlined a framework necessary to relate the form of an input vibration to an optimal 

transducer force. In creating this framework no assumptions of the transducer architecture were made. 

This framework was then applied to two case studies. The first was a vibration input of a single sinusoid. 

The optimal transducer was found to be a linear viscous damper with matched impedance, and a linear 

spring, resonant with the input frequency. This solution can be expressed as a function of the system’s 

states so is considered a passive system.  While the solution of this case study seems trivial, it 

demonstrates the method and validates it against a known case. 

The second application was an input of the sum of two sinusoids at different frequencies. The optimal 

transducer force found was dependent on the difference between the two frequencies. In all cases the 

optimal transducer force consists of a linear viscous damper with matched impedance, a linear spring, 

and a time dependent force component. This time dependent component was found to act as a 

conservative force, like a time dependent spring. The framework was used to find the upper limit for 

power generation. This limit was found to be twice the power output of a linear system harvesting only 

from the lower of the two frequency components.  

This basic framework could be applied to vibration inputs of various forms to determine the upper 

bound of power generation for that type of vibration, and the optimal transducer architecture.  If a 

transducer architecture is assumed, a Duffing oscillator for example, this methodology can be applied to 

determine how close to the assumed solution is to the upper bound. 
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