
 

 

 

 

 

 

 

 

Modeling of the thermo-mechanical efficiency of the bimetal 

strip heat engines 

A Arnaud
1,2

, S Monfray
1
,  J. Boughaleb

1
,  E Trioux

1,3
, F Boeuf

1
, O Cugat

2
, T 

Skotnicki
1
 

 
   1 ST Microelectronics, F38926 Crolles, France  

2 G2Elab, Univ. Grenoble Alpes, F38000 Grenoble, France  

3 TIMA, Univ. Grenoble Alpes, F38031 Grenoble 

 

E-mail: arthur.arnaud@st.com  

 
Abstract. This paper presents a theoretical demonstration of the bimetal strip heat engine 

working, based on the study of the thermo-mechanical instability of the pre-buckled bimetallic 

beams. Starting from the Euler buckling equation, this paper describes the bimetal strips like 

classical but non-linear thermodynamic systems, and gives the bistability criterion of such 

beams. Studying the thermodynamic potentials of these beams helps to evaluate the release of 

the kinetic energy happening during the beam snap-through, to give the Maxwell relations 

between each partial derivative of the thermodynamic potentials and to show that the thermal 

snap-through is a first-order transition according to the Ehrenfest theory. The model is then 

used to draw the temperature-entropy cycle of the bimetal heat engines and to evaluate the 

performances of these harvesters (available mechanical energy and thermodynamic cycle 

efficiency). 

Introduction 

The development of bimetal strip heat engines has been pursued as an alternative to the Seebeck 

thermoelectric generators based on the properties of semiconductors like bismuth tellurides, or to the 

conventional heat engines using fluids as a heat transfer medium. Proofs of concept have been 

reported in [1-6]. These devices are designed to exploit the sudden displacement of a bimetallic 

membrane switching from a critical equilibrium position to a stable one, to harvest a part of the 

thermal energy flowing through the bimetal and to convert it into kinetic energy. The existence of a 

hysteretic behavior, consequence of their bistability, enables to cycle beams between a hot source and 

a cold one (Fig.1a,b), causing then an astable behavior of the beams. The simplicity of this concept 

allows scaling down the devices using silicon manufacturing techniques ([4], [7]), which is expected 

to reduce the beam cycling duration, increasing then the heat flowing through the bimorph and finally 

multiplying the power generated by the harvester size scaling factor ([2]).  

With this article, we aim at consolidating the theory of the bimetal strip heat engine: in a first part, we 

explain how the non-linear Euler buckling equation can be used to predict the bistability of bimetallic 

beams, whereas in a second part, the evolutions of the strain energy and entropy of the beams are 

studied along the equilibrium path. Finally, the model is used to evaluate the performances of the 

bimetallic strips as heat transfer media at the microscale. 
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Figure 1. (a) Architecture scheme and (b) principle of the harvester. (c) Beam structure modeled 

1.  Snap-through modeling 

The thermo-mechanical instability of the bimetallic beams is a consequence of the Euler buckling 

phenomenon described by equation (1), giving the dependence of the lateral displacement field on the 

axial thrust pT and the beam bending stiffness ie. 

k
2
.w,xx+w,xxxx=0 (1a) 

k
2
=p

T
/ie (1b) 

Whereas the behavior of perfect and straight beam predicted by (1) looks like a pitchfork bifurcation, 

the behavior of an imperfect beam is sometimes a little bit more complex and can be discontinuous in 

some cases. This discontinuity is accompanied by a kinetic energy release and a sudden displacement 

of the beam called snap-through, caused by two imperfections of the beam having antagonistic effects. 

The bimetallic beam presented in Fig.2 is used to explain the conditions of occurrence of the thermal 

snap-through, by taking into account the combined effects of the residual stress and the thermal 

expansion. The beam’s mechanical properties can be globally described through the mean of the 

parameters set (ne, ie, nα, mα, Fo, Mo), where ne represents the beam stretching stiffness, nα the mean 

thermal stress coefficient of the beam, and Fo the mean residual stress in the beam (measured at θ
o
) 

which makes the beam buckle initially. The two beam’s imperfections are described by mα 

representing the asymmetry of the thermal expansion causing the thermal curvature of the beam in a 

given direction, and Mo representing the asymmetry of the residual stress in the beam’s materials 

which orientates initially the beam buckling in the opposite direction to the thermal curvature. Mo and 

mα must have the same signs to allow the thermo-mechanical instability to occur. 

ne=∫ E(z).δz.δy
y,z

 ; ie=∫ E(z).z².δz.δy
y,z

 (2a) 

nα=∫ E(z).α(z).δz.δy
y,z

 ; mα=∫ E(z).α(z).z.δz.δy
y,z

 (2b) 

Fo=∫ σo(z).δz.δy
y,z

 ; Mo=∫ σo(z).z.δz.δy
y,z

 (2c) 

Once these beam parameters are introduced, as we demonstrated in [8,9] it is possible to show that the 

thermodynamic principles, applied to the beam equilibrium, can be written as 

dK+dF=0 (3a) 

(T+T°).dS=δQ (3b) 

Where K is the kinetic energy of the beam, F its Helmholtz free energy, S its entropy and T its 

temperature (T° absolute temperature at which the stress is measured). Q represents the heat 

transferred to, or rejected from the beam during the heating and cooling periods. To understand the 

evolution of the internal beam efforts, one must express the constitutive equations of the beam. The 

Helmholtz free energy differential is given in (4a). As the volume and the temperature are the 

privileged variables of F in a classical thermodynamic system, we introduce here λ which is the 
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difference between the length of the curved beam and the length of the straight beam, coming from the 

non-linearity of the Van Karman strain tensor (4c).  

dF=-S.dT+(P-Po).dλ (4a) 

dWi=(P-Po).dλ (4b) 

λ=
1

2
.∫ w,x

2
L/2

-L/2

.dx (4c) 

The force Po is an invariant of the beam properties defined by (5a), which can be seen as a constant 

force applied by a pressure reservoir acting on the beam. The ratio of the Mo and mα is also used to 

define a reference temperature To (5b). The force P describes the effect of the beam internal efforts 

(5c): the beam non-linear stretching force linking to the beam length variation λ, the mean thermal 

expansion, and the clamp thrust p
T
 which verifies the non-linear Euler equation (1).  

Po=nα.Mo/mα-Fo (5a) 

To=Mo/mα (5b) 

P=ne.λ/L-nα.(T-To)+p
T
 (5c) 

Considering (4a), at a given temperature, the beam equilibrium is characterized by the equality. 

P=Po (6) 

As shown in [8,9], the instability appears when the external force Po exceeds the beam Euler load Pγ 

(7a) which is a solution of (7b). γ, varying from 0 to ∞, models the stiffness of the clamp (0 for a 

simply supported beam, ∞ for a doubly clamped beam).  

Po>Pγ⟺ nα.Mo/mα-Fo>ie.kγ
2
 (7a) 

kγ. cotan(kγ.L/2)+γ=0 (7b) 

The evolution of the beam shape can then be plotted in function of the external force applied to the 

beam, showing the appearance of an unstable behavior, as shown on Fig.2a, when (7a) is verified. As 

seen, the bistable beams exhibit a thermal hysteresis characterized by two temperatures called snap 

temperature TS and snap-back temperature TSB at which the beam snaps from a critical position (or 

limit point) to a stable equilibrium position. Each switching is accompanied by a kinetic energy release 

which can be harvested if the bimetal is coupled with a piezoelectric transducer [2] for example. 

   
Figure 2. Evolutions of the beam deflexion (a) and length λ (b) in function of the temperature and Po for a 

simply-supported beam (γ=0). (c) Evolution of the bistable beam shape in function of the temperature for a 

simply-supported beam (γ=0). 

2.  First-order transition and energy harvesting 

By using (1-7), we show that the beam strain energy Wi of the harmonic functions is given by (8). 
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 Wi=
ne

2.L
.λ

2
+ie (k

2
-2.

k
3
. sin(k.L)

k
2
.L-k. sin(k.L)

) .λ-(n α.T-Fo).λ (8) 

Drawing the potential Wi helps understanding the energetic meaning of the thermal snap-through. As 

seen on Fig. 3a, for a bistable beam, Wi can exhibit two equilibrium wells separated by a potential 

barrier formed by an unstable equilibrium position. The beam energy evolves with the temperature and 

the stable equilibrium positions can become critical when reaching TS or TSB, making the beam snap to 

the other stable position and release its energy kinetically.  

  
Figure 3. (a) Evolution of the strain energy and (b) entropy for a bistable beam in function of the 

temperature. (b) shows the thermodynamic cycle of the bimetal strip heat engine.  

 

The Schwartz theorem is used to give the Maxwell relations between the partial derivatives of the 

entropy and beam force P. The bimetallic strip, as a thermodynamic system, can then be described 

with the matrix (9) where the partial derivative of the entropy with respect to λ expresses the thermo-

mechanical coupling inside the beam materials. 

d (
S

P
) =(

Cλ

θ
-P,T

λ

P,T
λ P,λ

T
) .d (

T

λ
) (9) 

The expression of the entropy (10) is found by using (9) and its evolution in function of the beam 

temperature is drawn on Fig.3b.  

S-S°= (4.ie.
k

3
. sin(k.L)

k
2
.L-k. sin(k.L)

+nα.(T-To)) .
λ

T-To

+Cv.ln⁡(T+T°)  (10) 

Two discontinuities of the entropy happen at TS and TSB, meaning that the thermal snap-through is a 

first-order transition according to the Ehrenfest and Landau theories [10]. Similarly to any other first-

order phase change, a latent heat must be supplied to the beam to switch at TS and rejected from the 

beam to switch back at TSB. The order parameter associated to the transition is the deflection of the 

beam, which is either negative when the beam is at its lower state and in contact with the hot source, 

or positive when it is cooled at its upper state. The existence of a hysteresis on the temperature-entropy 

representation of the bimetals thermodynamic cycle shows the possibility to harvest energy thanks to a 

bimetal-based heat engines. This cycle can be compared to the classical Carnot cycle made of two 

isentropic and two isothermal curves and representing the maximal efficiency of a theoretically 

reversible heat engine. 

3.  Applications to micro-scale bimetals heat engine 

The model can be used to evaluate the efficiency of a bimetal strip heat engine both at the macroscale 

and the microscale. In this paper, we study only the micro-harvesters, and take the example of a 

Carnot cycle 

Discontinuity 

Discontinuity 
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bimorph of aluminium (Al) and silicon oxide (SiO2). This bimorph owns naturally a high difference of 

thermal expansion coefficients (αAl=23.10
-6

K
-1

, αSiO2=2,9.10
-6

K
-1

). Fig.4a gives the evolution of the 

beam deflexion in function of the thermal hysteresis of a 200µm-long beam (with 2µm-thick layer for 

each material). Fig.4b gives the energy density which can be harvested when the beam snaps and 

snaps back. Using (10) to evaluate the thermal exchange of the beam with its surrounding, it can be 

shown (Fig.4c), that a Carnot-relative efficiency of around 1.7% (up to 3.5% with a W-Al beam [9]) 

and an energy density of about 300µJ.cm
-3

 can be obtained with two-degree hysteresis SiO2-Al beam. 

 

  

Figure 4. (a) Evolution of the beam deflection in function of the thermal hysteresis (mean temperature of 

the hysteresis: 75°C) (b) Evolution of the kinetic energy density of the bimetallic beam (Normalization by 

the volume occupied by the beam during a cycle (Fig 4.a)) (c) Absolute efficiency and Carnot-relative 

efficiency of the beam’s thermodynamic cycle 

4.  Conclusion 

By proposing a thermodynamic representation of the bimetallic beams, we found the necessary 

conditions to observe the occurrence of the thermo-mechanical bistability, and demonstrated that the 

thermal snap-through is a first-order transition according to the Ehrenfest theory. The hysteretic 

behavior of these bimorphs can then be used to harvest a part of the heat flowing through them by 

converting it into strain energy. Thanks to our model, we evaluated the thermo-mechanical efficiency 

of such heat engines both at the macro and micro-scales. A theoretical Carnot-relative efficiency of 

around 2~4% and a theoretical strain energy density of 300µJ/cm
3
 per snap can be obtained with a 

two-degree-hysteresis beam, which would be sufficient to power Wireless Sensor Nodes according to 

the scaling laws developed in [2].  
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