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Abstract. The methods of lattice QCD and available computer resources are now sufficient
that predictions for many of the Standard Model properties of kaons can be made from first
principles with accurately bounded uncertainties. We discuss two relatively new areas where
lattice methods are having or will soon have a large impact: calculation of the two complex
amplitudes Ag and Az describing the decay of the kaon into two-pions with I = 0 and 2 and
calculation of long-distance contributions to second-order electro-weak processes including the
K1, — Ks mass difference AMp, the CP-violating parameter ex and certain rare kaon decays.

1. Introduction

Over the past thirty years lattice QCD has evolved from providing a first non-perturbative
demonstration of confinement and chiral symmetry breaking in QCD to allowing much of low
energy QCD to be accurately computed from first principles with controlled uncertainties. By
replacing the space-time continuum by a regular, four-dimensional, hyper-cubic lattice and using
powerful Monte Carlo methods to evaluate the Fuclidean Feynman path integral which defines
QCD, the previously intractable complexities of low-energy, strongly-coupled QCD are reduced
to the problem of obtaining very large computational resources and developing increasingly
powerful and efficient numerical strategies — two areas in which advancing technology and the
growing importance of computational methods throughout science work to our advantage.

In the past two years, lattice QCD calculations have crossed an important threshold and
can now determine directly the physics of the up, down and strange quarks using their physical
masses, or in the case of most calculations, a single, isospin-symmetric average mass of = 3
MeV, (expressed in the MS renormalization scheme at 3 GeV) for the up and down quarks,
giving three degenerate pions of mass 135 MeV. Earlier calculations used light quark masses as
large as 30 or 40 MeV and relied on chiral perturbation theory to extrapolate to the physical
value, introducing significant, uncontrolled errors.

This ability to work at a physical value for the light quark mass is especially advantageous
for calculations performed with chiral fermions where the light quark mass can be the largest
source of unphysical, chiral symmetry breaking. For example, the calculations of the RBC and
UKQCD collaborations typically use the domain wall fermion formulation in which an extra fifth
dimension, whose size varies between 12 and 32 lattice units, literally separates the right- and
left-handed fermion chiralities. While the Wilson and staggered fermion formulations achieve
physical chiral symmetry in the continuum limit, the breaking of chiral symmetry at short
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distances complicates the definition of the AS = 1 weak Hamiltonian where the number of
operators whose mixing must be controlled is dramatically reduced by chiral symmetry.

In addition, the explicit breaking of chiral symmetry by lattice artifacts for Wilson and
staggered fermions is often the largest source of finite lattice spacing errors, errors which are
absent when a chiral formulation is used. This is illustrated in Figure 1 where dimensionless
ratios for a number of quantities are compared between two calculations, with inverse lattice
spacings of 1/a = 1.73 GeV and 2.28 GeV. These two calculations give results which agree on
the ~ 1% level for lattice spacings which are not especially small by current standards.
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Figure 1. Comparison of a series of dimensionless ratios obtained from calculations at two
inverse lattice spacings: 1/a = 1.73 GeV and 2.28 GeV. The ratio of each ratio is plotted on the
y axis. The subscripts indicate the masses of the quarks used where h indicates a near strange
quark mass while [ is a less massive quark. Further explanation can be found in Ref. [1].

This combined ability to work at physical quark masses and the empirically small finite lattice
spacing errors found with chiral fermions implies that results accurate on the percent level can be
obtained from a single lattice QCD calculation without chiral or even continuum extrapolations.
For example, in a recent calculation on a 483 x 96 lattice with 1/a = 1.73 GeV and light
and strange quark masses chosen close to their physical values, we have obtained the result
fr = 130.7(2) MeV directly from the computer with no extrapolations or corrections beyond
the normalization factor for the axial current. The 0.2% error is statistical and a satisfactory
agreement with the experimental value of f; = 130.4 MeV is seen even for this simple, direct
result. While added calculations with a smaller lattice spacing and heavier quark masses allow
sub-percent corrections to be made that adjust for the small mismatch of the input and physical
quark masses and O(a?) discretization errors [2], a result for f, with percent accuracy can be
obtained from a direct calculation of this quantity on a single lattice QCD ensemble.

Since the methods and available resources for lattice QCD are now sufficient to allow a basic
quantity such as fr to be so easily computed, it is natural to turn to more complex quantities
which are more difficult to compute using lattice methods but also less well known and possibly
of greater fundamental interest. In this paper we describe progress in two such directions: the
calculation of the complex AT = 3/2 and 1/2, K — 7w decay amplitudes Ay and Ay and the

calculation of the long-distance contributions to K° — K mixing and rare kaon decays.

2. Computing Ay and A, using lattice QCD

Three ingredients are needed for a first-principles lattice QCD calculation of amplitudes
contributing to K — 7wm decay: the properly normalized, four-quark, AS = 1 weak Hamiltonian
H@,S:l; the ability to exploit the energy quantization of two-pion, finite-volume states to create
a final m — 7w state with energy equal to My and an understanding of the finite volume effects
which must be removed to obtain a physical, infinite-volume decay amplitude. Fortunately,
reliable techniques are now available to address each of these issues.
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The effective AS = 1 weak Hamiltonian which should describe K — 77 in the Standard
Model is known from pioneering work in the 1970’s and has been described in a comprehensive
way [3] that can be accurately adapted to support lattice QCD calculations. The Rome-
Southampton non-perturbative renormalization scheme [4] can be used to express the lattice-
regularized versions of the seven independent four-quark operators which enter H‘%,S:l in terms
of operators that have a well-defined continuum limit and can be related using continuum, QCD
perturbation theory to the MS renormalization scheme used to determine the Wilson coefficients
which appear in continuum expressions for H@SZI. These methods have been used successfully
in recent lattice calculations [5] and are expected to be accurate at the 10-20% level.

This uncertainty is caused by the use of QCD perturbation theory at the scale of ~ 2 GeV and
the use of perturbation theory to remove the charm quark to obtain operators appropriate for a
three-flavor theory. While this level of accuracy may be appropriate for present calculations, it
can be improved to whatever extent is required by simply increasing the energy scale at which
the lattice and continuum calculations are compared. A first step is to include the charm quark
in the lattice calculation. By using a four-flavor theory we will avoid the problem of using
perturbation theory at the charm quark scale and the uncertain validity of assuming that the
charm quark mass is much larger than the energy scale relevant for K meson decay. Of course,
if the charm quark is to be included in a lattice calculation, a lattice spacing must be used that
is sufficiently small that O((mca)z) errors can be controlled. The second step in eliminating
potential errors caused by the use of perturbation theory is to exploit “step-scaling” [6] and carry
out the Rome-Southampton operator renormalization at a series of smaller lattice spacings and
corresponding smaller lattice volumes until the scale of momentum employed is sufficiently large
to guarantee sufficiently small perturbative errors. Note, this is much less demanding than
performing the entire K — w7 calculation at such small lattice spacings.

The next ingredient in this calculation is the creation of a physical two-pion final state.
This can be done in a lattice calculation by following Lellouch and Liischer [7], exploiting the
finite-volume quantization of the two-pion energy and adjusting the volume so that the energy
of a finite-volume, excited two-pion state matches Mg. In a Euclidean-space Green’s function
calculation the contribution of an excited two-pion state falls exponentially with increasing time
relative to states with lower energy. This difficulty can be partially overcome if we introduce
boundary conditions chosen to select the pion momentum that is present in the two-pion state of
interest [8, 9]. For example, Figure 2 suggests the effects on the pion wave function of boundary
conditions which are anti-periodic in one of the three spatial directions.

Of course, in a lattice calculation we can only impose boundary conditions on the underlying
quarks and not directly on the pions. For the case of the I = 2, two-pion final state this is
not difficult since we can use isospin symmetry to relate the amplitude of interest to the unique
state in which both pions have charge +1 and then impose anti-boundary conditions on the down
anti-quark, leaving the up quark to obey periodic boundary conditions. While this condition
breaks isospin symmetry it cannot alter the I = 2 character of the finite-volume state in question
because that state is uniquely determined by its charge.

The problem of imposing boundary conditions which will insure that the lowest energy, I = 0,
m — 7 state will have an energy equal to that of the K meson is much more challenging. Since
the I = 0 state has the same electric charge as that with I = 2 we must impose boundary
conditions which are consistent with isopsin symmetry to avoid mixing these two states. This
can be done by imposing G-parity boundary conditions [8, 10] which have the unusual feature
of mixing particle and anti-particle. This is illustrated in Figure 3.

In a calculation in which the effects of finite volume are being critically used to create a final
two-pion state with the proper energy, we should be concerned that other finite-volume effects
may introduce significant systematic errors. Fortunately in the paper [7] pointing out the utility
of exploiting finite volume to create a physical two-pion state, Lellouch and Liischer also provide
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Figure 3. Diagram illustrating the unusual
features of G-parity boundary conditions: a u
quark passes through the boundary on the right
and emerges on the left as a d while the u — d, 7+
state in the center of the box is represented by a d d
pair when that pion state straddles the boundary.

Figure 2. Diagram suggesting behavior
of the pion wave function that will result
if anti-periodic boundary conditions in
one direction are obeyed by the pion.

a concrete formula for removing the leading finite-volume effects so that for volumes of linear
extent L with m,L > 4 one expects sub-percent residual finite-volume corrections.

While the easier calculation of the AI = 3/2 amplitude was a pioneering effort in 2012 [11]
it is now a well developed and routine part of the computational package run by the RBC and
UKQCD Collaborations at increasingly small lattice spacing [12]. Our present preliminary result
for Ay at physical quark mass in the continuum limit is

Re(Az) = 1.606(61)stat(145)sys x 1078GeV,  TIm(As) = 7.35(24)stat(88)sys x 107 3GeV. (1)

The real part of Ao agrees reasonably well with the experimental value of 1.436(4) x 1078 GeV
while Im(A3) cannot be directly measured in experiment and has not been previously computed.

Calculation of the AT = 1/2 amplitude is much more difficult because the quantum numbers
of the I = 0, # — 7 final state are the same as those of the vacuum and the G-parity boundary
conditions still allow the vacuum as a final state. Although this state can be subtracted, the
noise left behind grows exponentially as eMx? relative to the m — m signal, when the final state
propagates for the time t.

However, after much preparation we have begun a realistic calculation of Ay using G-parity
boundary conditions in all three spatial directions on a 323 x 64 lattice with 1/a = 1.37 GeV
and physical values for the light and strange quark masses. All seven operators entering H&‘VSZI
are being evaluated. The two pions are absorbed on time slices separated by four time units and
hydrogen atom wave functions with a radius of two lattice units are used for each of the pion
states, an arrangement which is realized by using all-to-all propagators. These two features of
the calculation have been shown in earlier studies [13, 14] to give improvements which reduce
the noise coming from the vacuum subtraction by more than a factor of four. This calculation
is now underway and we expect to have results with 20-30% errors within the coming year. If
successful, this will give the first Standard Model prediction of the direct CP-violating parameter
¢’. For the real parts of Ayp and Az we can already compare unphysical results for Re(Ap) with
the physical calculation of Re(A2) and recognize an emerging explanation for AI = 1/2 rule [15]:
the two amplitudes which add to give Re(Ap) cancel when combined to form Re(As).

3. Long distance contributions to second-order weak processes

Given the ability to work with physical quark masses and to control all systematic errors it is
natural to ask if there are additional areas in kaon physics where lattice QCD might advance
our understanding of Standard Model processes. One such new and promising direction is the
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use of lattice QCD to calculate what are often referred to as long distance, second-order weak
phenomena. Such phenomena include the Kj — Kg mass difference AMp, the contribution of
the up and charm quark loops to the indirect CP-violation parameter ex and certain rare kaon
decays where the change of quantum numbers requires that the decay occur at second order
in the weak interactions. Such second-order weak processes are of great interest because their
small size implies increased sensitivity to other, non-Standard-Model phenomena.

Such second order weak phenomena usually involve internal loops containing W bosons and
receive contributions from both short distances on the order of the inverse W or top quark
mass and long distances on the order of the inverse charm quark mass 1/m. or the QCD scale
1/Aqcp. Here the notions of short and long distances are best defined as the scales at which
QCD perturbation theory is or is not applicable. While in the past, the charm quark scale has
been included in the short-distance category, recent perturbative studies of AMp [16] which is
dominated by distances of order 1/m, suggest that non-perturbative methods are required even
at this scale to obtain reliable results.

The largest contribution to €x comes from a top-quark loop which implies that at long
distances, this second-order weak process can be expressed as a local AS = 2 operator multiplied
by a Wilson coefficient which can be accurately computed in perturbation theory. However, up
and charm quarks contribute at the few-percent level and such amplitudes involve two local W
exchanges (each accurately represented by a H. I%,S =l or Hv%czl vertex), which may be separated
by distances of the order of 1/Aqcp. For AMp the top quark is suppressed by the relatively
small size of the real parts of its CKM matrix element and the dominant contribution comes
from the long-distance contributions of up and charm quarks.

While non-trivial, the computation of such long-distance mixing effects is possible using lattice
QCD [17]. The challenge of such calculations arises both from the complexities of the second-
order amplitudes involved and the fact that the calculation is performed in Euclidean space.
The quantum mechanical strategy underlying the calculation is straight-forward. We compute
the matrix element between K° and K' as the product of two, four-quark, weak operators
integrated over a volume of time extent 7" as is illustrated in Figure 4. In such a Euclidean time
calculation there will be a number of physical process that contribute. The process of interest
is simple propagation of a K-meson state with the exponential time dependence e~ (M +AM)T
which when evaluated at second order in AHyy will give the term AMgT, linear in T, from
which AMp can be easily extracted.

Unfortunately this term of interest must be distinguished from exponentially larger terms
in which the factors of Hy allow the energy-non-conserving decay of the kaon state to an
intermediate vacuum, single pion state or m — 7 state with energy below Mg. For example,
the contribution of an intermediate, single-pion state will fall much less rapidly with increasing
T as e M=T However, these larger terms can be computed independently and subtracted in a
correlated fashion, yielding a linear term which can be accurately identified as shown in Figure 5.
The data presented in this figure comes from a complete calculation [18], including all graphs,
which obtains AMpy with a =~ 15% statistical error but which must be repeated at smaller
lattice spacing if the O((mca)z) discretization errors associated with the charm quark mass are
to be controlled. A similar calculation of the long-distance contributions to ex has now been
started. This calculation is more difficult because there is reduced GIM suppression and a non-
perturbative subtraction combined with a perturbative correction is needed to properly join the
non-perturbative long-distance with the perturbative short-distance results.

For rare kaon decays such as K; — 7%T¢~ or K — ntu¥ such non-perturbative, long-
distance contributions are important at the few percent level and their calculation using lattice
methods promises to extend the physics reach of experiments studying these decays. Calculation
of such decays using lattice QCD [19] is now practical and exploratory calculations are now being
carried out by RBC and UKQCD. These decays are more accessible to lattice QCD than the
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Integrated Correlator

Q, M, x*/d.0.f= 0.95(0.59
Q,M,, x*/d.o.f=0.73(0.51)
Q,M,, X’/d.0.f= 0.65(0.48)

o

Figure 4. Diagram showing schematically
a calculation of the long-distance parts
of AMg or ex using lattice QCD. The
two first-order weak opeartors Hyy are
integrated over a region of time extent T
lying between the operators which create

the initial KY and destroy the final i

o

Figure 5. Plots of the linear T" behavior in
the calculation of AMy for products of the

operators O; and Os appearing in H I]/‘V/f =

K — 7 calculations described in the previous section because of the absence of final state
interactions, allowing the final state particles to be directly assigned the momenta carried by
the physical decay products. However, the diagrams that must be evaluated are more complex
and the presence of additional, Euclidean-time processes which are exponentially larger than
the transition of interest (described above for the calculation of AMy) must be overcome.

4. Conclusions

The ability to work directly with physical quark masses and to employ a fermion formulation
which respects chiral symmetry makes possible the calculation of a variety of important
quantities in kaon physics such as the complex, two-pion decay amplitudes Ay and As, the
K; — Kg mass difference and the long distance contributions to ex and rare kaon decays.
Current calculations and future calculations at sufficiently small lattice spacing to allow accurate
treatment of the charm quark, open the possibility to discover new phenomena beyond those
predicted by the Standard Model at increasingly high energy and with increasing precision.
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