The Science of Making Torque from Wind 2012 IOP Publishing
Journal of Physics: Conference Series 555 (2014) 012095 doi:10.1088/1742-6596/555/1/012095

Are Sea State Measurements Required for Fatigue
Load Monitoring of Offshore Wind Turbines?

U Smolka, D Kaufer and P W Cheng
Stuttgart Wind Energy Research (SWE), Universitiat Stuttgart, Germany

E-mail: Ursula.Smolka/Daniel.Kaufer/PoWen.Cheng@ifb.uni-stuttgart.de

Abstract. Neural network algorithms have shown the capability to infer the actual wind
turbine loading from standard signals commonly used for operational control purposes. Fatigue
load monitoring done with this readily available data, can offer a robust and cost effective
alternative to conventional maintenance-intensive mechanical stress measurement devices. The
concept needs to be adopted to offshore wind turbines, where the exposure to the harsh
environment with rather difficult accessibility makes the use particularly attractive. At such a
site the impact of hydro-dynamically dominated loads might result in poor fatigue estimates,
which is due to the lack of information on the surrounding sea state. In order to avoid the need
of measuring-buoys, this work studies the employment of additional accelerometers mounted
directly at the structure. Various potential placements and three sub-structure types are
considered to account for the characteristic structural response caused by wave induced loading.
The feasibility is demonstrated on generic data, gained from simulations. Recommended
practices are deduced and applied to data from the AREVA M5000 turbine at ”alpha ventus”.

1. Introduction

Conventional fatigue load monitoring is done with mechanical stress measurements. For reasons
of costs and reliability of the measuring devices it is applied on prototypes for a limited period of
time only. Therefore knowledge of long-term site specific accumulated loading of wind turbines
is difficult to obtain. A fatigue load monitoring system based on standard signals, such as
electrical power, generator speed and pitch angle conventionally measured for operational control
purposes can be used to infer the actual loading of the wind turbine with the use of artificial
neural networks [1]. The accuracy of the load estimation has been evaluated for field data of
offshore wind turbines with monopile [2] and tripod type sub-structures [3]. In both cases poor
results were obtained where wave induced loads play a dominant role.

Relying on standard signals only, the estimation of fatigue loads acting on the structure above
the sea surface works well in normal operating condition, as the sea state is highly correlated
with the wind speed measured at the hub height. However, under the same condition the
estimation of structural loading under the water surface does not produce acceptable results,
due to the influence of currents. Furthermore poor results are obtained for all structural
fatigue loads occurring under parked or idling operational conditions. But due to the absence
of aero-dynamical damping in idling condition the wave impact on the structure is passed to
the tower top. If acceleration signals are available, the information on hydrodynamic loading
can be extracted by the neural network to some extent. Without sea state measurements a
comprehensive overall load monitoring system that relies on standard data only is not feasible.
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There are fatigue loads of interest that can only be estimated when the sea state measurements
are available to provide a direct correlate to the structural response of the loaded wind turbine.

This work focuses on improving fatigue load monitoring for loading situations where non
standard sea state measurements are required in theory for an accurate estimation. It is
suggested to extend the number of standard signals with additional accelerometer measurements,
originating from devices mounted directly at the support structure. Therefore a method to derive
an optimal accelerometer configuration is introduced. Eventually, it is the goal to identify
a substitute for expensive oceanographic sensors while providing similar or even better load
monitoring quality.

In the scope of this paper, a short overview on the design of the study and fatigue load
monitoring based on standard signals is given first. Then the verification of the load monitoring
with added accelerometers is done in Section 3 by conducting IEC compliant simulations under
coupled wind and wave dynamics [4] for different support structure types. The simulation
results constitute a generic data base as it is not taken from real measurements and used to
systematically evaluate the estimation accuracy of wave induced fatigue loading, by varying
the information content provided to the neural network. The achievable accuracy and optimal
placement of the accelerometers at the support structure of the wind turbine is discussed in
Section 4. Based on the established method and recommendations, fatigue load monitoring
with added accelerometers instead of sea state measurements is demonstrated in Section 5 using
one year of measurement data from the test site "alpha ventus” for the AREVA M5000 tripod
type support structure.

2. Wind Turbine Parameters and Load Cases

The characteristic interaction of support structures with the surrounding sea state has lead to
a variety of fixed-bottom concepts realized in the offshore industry. Their suitability to specific
offshore sites result from the assumed design fatigue and extreme loads which are driven by
a combination of aero- and hydrodynamical environmental parameters. In order to assess the
potential of the suggested monitoring of hydrodynamic loads on the basis of accelerometer data,
key aspects such as sub-structure type, simulation tool, simulation set-up and load cases have
been considered in the present analysis. While the simulation time series gained serve as a generic
dataset for the design and general evaluation of the load monitoring system, the AREVA M5000
turbine sited at ”alpha ventus” is the source of field data used to apply the concept.

2.1. Offshore Turbine Model Description

Three common sub-structure types were chosen that show a distinct structural response to
hydrodynamic loading [5]. The monopile type sub-structure is most frequently applied at shallow
water sites up to 25 m water depth. As a matter of stiffness, large diameters are required that
attract relatively high hydrodynamic loads. For deeper sites a collection of slender members
that let the water masses pass relatively unobstructed is favoured as sub-structure. Tripods and
jackets belong to this class. Due to a usually wide base their resistance against overturning is
affected by the directionality of wind and wave loads.

The generic offshore wind turbine models used are publicly available and rely on the
achievements of the UpWind project [6] to design a jacket for 50 m of water depth and the
IEA Wind Annex 23 Subtask 2 - Offshore Code Comparison Collaboration (OC3) [7] to design
a monopile and tripod for water depths of 20 m and 45 m respectively. All sub-structure types
designed were adopted to carry the generic wind turbine developed by NREL [8]. The turbine is
a representative of the 5 MW class, designed by averaging and extrapolating basic parameters
of wind turbines on the market. This wind turbine is a conventional three-bladed, upwind,
variable speed, variable pitch to feather controlled turbine. The specifications consisted of



The Science of Making Torque from Wind 2012 IOP Publishing
Journal of Physics: Conference Series 555 (2014) 012095 doi:10.1088/1742-6596/555/1/012095

detailed aerodynamic properties, structural data for blades, tower, nacelle and drive-train. The
original controller of this turbine has been changed by an in-house optimized controller.

The AREVA M5000, with properties and parameters that are comparable to the NREL
turbine, is supported by a tripod sub-structure in water depth around 28 m. An overview of the
four turbines’ specification is given in Table 1.

Table 1. Specifications of the generic models and the AREVA M5000 turbine used in the study.
Generic data is generated from FLEX5 - Poseidon fully integrated simulations, while field data
was recorded at the test field ”alpha ventus” in the North Sea.

generic model ” alpha-ventus”
OC3 monopile UpWind jacket OC3 tripod AREVA M5000

rated power 5 MW 5 MW

rated wind speed 11.4 2 12.5 2
rotor-nacelle mass 350 t 309 t

tower mass 348 t 348 t

1st tower eigenfrequency 0.278 Hz 0.261 Hz 0.282 Hz — Hz
sub-structure mass 285t 676 t 826 t —t
water depth 20 m 50 m 45 m 28 m

2.2. Simulation Assumptions and Load cases

Acceleration measurements play the major role in the detection and estimation of hydrodynamic
loads within this work. Therefore, a fully integrated time domain analysis is required to assure
a proper computation of the interaction between sea-state and structural response. The fatigue
load simulations are conducted with Flex5-Poseidon [4] to produce meaningful time series. As
a function of wind speed, the operational behaviour and thus the loading characteristic of wind
turbines in power production and idling mode differs significantly. A total of nine independent
wind seeds for each 1™ bin in the range from from 47 to 257 are used in IEC compliant fatigue
load simulations for both power production and idling operation mode of the three generic
turbines. Transient events were not considered in the simulation nor within the measurements.
All environmental conditions are extracted from the design basis of ”alpha ventus” for one inflow
sector and binned wind speed with a unique sea state assigned to[9]. To spread the loading a
slight misalignment of +4° between turbulent wind and the sea state are overlaid for six out of
nine total seed numbers. The inflow sector is not changed at all, such that the directionality in
wind and wave loading is neglected in the analysis. In total, 198 ten minute time series with
a sampling rate of 50 Hz are simulated for each turbine, equal to 66 hours of operation. The
amount of data and the sampling rate meets the specific needs in the training procedure of the
neural network for the anticipated load monitoring discussed in Section 4.

3. Neural Network Configuration for Fatigue Load Estimation

The discussed load monitoring system profits from the capability of artificial neural networks
(ANN) to establish complex non-linear mapping function. Their ability to classify, to organize
and to learn from sample data is established during an iterative training process where a number
of corresponding input-output data pairs are presented to the network. A random configuration
of the networks weights which describe an addition and division calculation rule of the input
values, is the starting point. Then the involved algorithm brings the network’s output (estimate)
closer to the desired output (target) by adapting the network configuration appropriately. As
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the network is made to learn the dynamics of the wind turbine based on presented input-output
data pairs, no modelling equations and a-priori knowledge as needed for physics based models are
required. The learning algorithm processes generic and real turbine data equally. The resulting
network is specific to the (generic) turbine and uses the once identified mapping function between
target and input, to compute an estimate when new input data is available. A more elaborate
description on the set up of feed-forward single layer neural networks for fatigue load monitoring
of offshore wind turbines can be found in [3] while a more general introduction is given in [10].

In the present context, a set of ten minute based aggregated values of four standard signals
serve as basic input to the neural network. The fifth signal is kept variable to assess the quality
of the load estimation procedure depending on non-standard signals. Besides the significant
wave height, four individual lateral and longitudinal accelerometer signals are used, originating
from distributed locations at heights from the tower top till the sub-structure. The aggregation
of high resolution signals can be done by considering various statistical quantities and aggregates.

The list below gives an overview of the signals and corresponding statistics, all used as a set
of input variables for one feed-forward neural network:

(i) yaw misalignment: mean, std. dev.

generator speed: min., mean, max., std. dev. and equivalent range value

)
(iii) electrical power: min., mean, max., std. dev. and equivalent range value
) pitch angle: min., mean, max., std. dev. and equivalent range value

)

swapped (non-)standard signal: either significant wave height or std. dev. and equiv-
alent range of acceleration.

To allow for a mapping between fatigue loads and standard signals, it is sufficient to derive
ten minute aggregates that reduce the complexity of the dynamic characteristics of disturbances
and loads [1]. The load estimation procedure will work satisfactory with mean, minima (min.),
maxima (max.) and standard deviation (std. dev.) values applied on the signals on the
input side of the neural network. As a new feature in contrast to [1],[2] and[3], rain-flow
counted equivalent signal range values of the high resolution inputs were added as well. The
computation is done for the same Wohler constant and reference cycle number as for the fatigue
load cycle computation. By transferring the strong non-linearity to the inputs that is present
in the fatigue load cycle computation, a higher estimation accuracy could be achieved. On the
output side, equivalent load ranges are commonly used to describe fatigue loads. They allow to
characterize the fatigue impact of a distinct loading time series with just two parameters. For
the evaluation of the suggested method in total four hydro-dynamically influenced load signals
have been selected: longitudinal tower base bending moment and overturning moment for all
three sub-structure types, local axial strain for one slender member oriented vertically at the
jacket sub-structure base and finally the local strain at two of the tripod braces with horizontal
and diagonal orientation with respect to the seabed. Each of these load quantities required two
neural network trainings, one for the power production and one for the idling condition. Finally,
all settings and configurations that influence the quality of the estimation are maintained during
the whole study, both for generic and for field measurement data. The trainings and evaluation
of the neural network were conducted using M ATLAB® and the freely available NNSY SID
Toolbox of the Technical University of Denmark [11].

4. Evaluating the Use of Additional Accelerometer Data

4.1. Achievable Estimation Accuracy

The configurations defined in Section 3 consist of a set of standard signals, one non-standard
signal and the load quantity to be estimated. For each of these configurations and data from
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two operational conditions - power production and idling - a neural network has been trained
with data from six seeds out of nine total per wind bin. The remaining time series from the
three seeds per bin are used to test the trained neural network for its capability the estimate
fatigue loads from the data it has not seen before. The accuracy is given as the root mean
square (RMS) estimation error of the test data as listed in table 2 for the best configurations
found. The smaller the value, the better the information on the overall fatigue loading can be
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Figure 1. Relative estimation accuracy when replacing the significant (sign.) wave height
signal by acceleration signals either originating from the tower (twr.) top or the tower bottom
or the support structure at mean sea level height (m.s.1) or from below the sea level (b.s.l).
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inferred by the neural networks’ learning algorithm from the selected inputs. The reasons for
changes in accuracy within the various configuration are plenty. For example the presence or
absence of aero dynamical damping, the dominance of hydrodynamical loads, the interaction of
the sub-structure with passing water masses or the added information on aerodynamical loading
by adding new inputs. Within the scope of this work this is not elaborated on. Instead Figure
1 contains a useful summary on the substitutability of sea state measurements.

Figure 1 gives an overview of the achievable accuracy using different accelerometer signals and
relates the results to the configuration where the significant wave height is assumed available.
As an example, the longitudinal tower base bending moment of the analysed wind turbine
with monopile sub-structure can be equally well estimated using tower top accelerometer
measurements rather than the significant wave height signal. A closer look reveals that the
accuracy has even improved by 13% for power production modes and by 3% for idling. Moving
on to the overturning moment in the same row of the figure, it is striking that all chosen
accelerometer signals do outperform the reference configuration by (4% — 15%) in idling mode,
and under performs just once in power production mode by around 2%. Reviewing all other wind
turbines with their load signals analysed, it is apparent that one can always find an accelerometer
signal that can replace sea state measurements, independently from the sub-structure type and
independently from the load quantity to be estimated. In some cases it might be even attractive
and necessary to install two accelerometer devices to get best results: whereas the monopile
and jacket type sub-structure loads show an improved estimation accuracy with the use of
tower top accelerometer signals only, the tripod brace 1 and brace 2 loads require an additional
accelerometer device mounted on the structure below the sea level.

4.2. Practical Recommendations
It has been shown that the use of accelerometers facilitates the replacement of sea state
measurements and even has the potential to lead to better fatigue load estimation results. To find
the best configuration for a specific load estimation task, several aspects like the accessibility
for maintenance and installation routines, robustness of the device and investment are to be
included. As an example it might be tolerable to loose accuracy in estimating the local loads
on the tripod braces by saving costs for the operation of a measuring buoy or an additional
acceleration sensor with poor accessibility. Considering the operational time that the turbine
will be in power production mode, a higher estimation accuracy in that mode is favourable.
Based on the findings above for each sub-structure type a new neural network has been trained
to cope with data from both idling and power production mode, using accelerometer signals that
lead to the highest achievable accuracy. Figure 2 shows the RMS error of the longitudinal tower
base bending moment for the idling modes trained separately and combined, binned over the
mean wind speed. It is apparent that all three sub-structure types exhibit a similar behaviour,
with a peak around the rated wind speed in power production mode and an approximately linear
rise in the RMS error with rising wind speed in idling mode. Therefore it can be stated that the
transition region between partial and full load constitutes a severe challenge for the estimation
procedure that is based on ten minute statistics only. Equally high errors are obtained when the
turbines are idling at wind speeds higher than 20 . The last graph demonstrates the capability
of the neural network to process the available inputs in an optimal way, where the RMS error is
balanced between the occurrence of both operation modes. Table 2 summarizes the results for
the best accelerometer signal configuration along with the significant wave height configuration
by displaying the absolute mean estimation error with its standard deviation.

5. Application to Field Data
The database employed in this study consists of one year of ”alpha-ventus” test-field data
(2010/05 - 2011/04) of the AREVA M5000 with turbine properties listed in Table 1. Figure 3



IOP Publishing
doi:10.1088/1742-6596/555/1/012095

The Science of Making Torque from Wind 2012
Journal of Physics: Conference Series 555 (2014) 012095

Table 2. Mean estimation error [%] and standard deviation for the studied generic models.
Only significant wave height and best accelerometer configuration is listed.

twr. base overturning strain strain
bending moment moment at brace 1 at brace 2
monopile
sign. wave height 0.49 +£8.33 0.17+£7.13
twr. top 1.36 £ 7.71 0.56 + 5.04
jacket
sign. wave height 0.36 £ 9.96 1.34 £7.22 0.73 £8.32
twr. top 0.66 & 8.97 0.15+4.34 0.28 £5.40
tripod
sign. wave height 1.68 4+ 10.62 0.73 £10.69 0.54 £10.67 1.43 £7.05
twr. top & b.s.l. acc. 0.93 +4.66 0.23 +4.81 0.92 +6.00 0.36 +5.03

a) shows a photo-montage of the turbine and a draft of the tripod (not to scale). Compared
to the generic tripod type sub-structure, the horizontal braces in the lower part, connecting
the pile sleeves, are missing. But due to the overall geometric similarity, the best accelerometer
configuration derived in the simulation study, is chosen. The data portion used includes standard
signals listed in Section 3 and additional non-standard acceleration data from the tower top and
below the sea level in lateral and longitudinal direction. The position of these sensors are marked
with a blue diamond in Figure 3 a).

To allow for a comparison with the reference study case, the estimation routine that includes
the significant wave height measurements is considered as well. Except for the significant
wave height which is recorded by a buoy at the research platform FINO 1 in a distance of
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Figure 2. Estimation accuracy of simulated longitudinal tower base bending moments for two
operation modes and their combination, using accelerometer signals.
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approximately 700 m of the test turbine, all measurements are sampled at 50 Hz and aggregated
to ten minute statistics and equivalent ranges. According to the damage accumulation hypothesis
the equivalent load range is computed for three out of the four discussed fatigue loads. The grey
striped pattern at the lower leg brace 1, upper leg brace 2 and main column of the tripod in
Figure 3 a) mark the sensor locations used for longitudinal tower bottom bending moment and
local strain computations. The overturning moment is not available as evaluated quantity, due
to sensor failure.
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Figure 3. Regression plot of estimated versus measured fatigue loads with two different neural
network configurations: light grey using only significant wave height and dark grey using best
accelerometer. The values are normalised using mean and standard deviation values from the
training data set.

During the twelve month of operation the turbine experienced mean wind speeds of up to
28 % with mean turbulence intensities ranging from 5 % to 18 % and wave heights of up to 6 m
during idling, parked and power production modes in wake and free inflow conditions. Including
a total of 29823 ten minute data samples used in the validation of the concept, demands a higher
computational effort for the training process than in the case of the generic dataset used in the
preliminary studies. But the variety of environmental and operational conditions present in the
dataset is desirable. The regression plots displayed in Figure 3 b) to d), give an impression
about the capability of the neural network to cope with the noise under real conditions. For the
longitudinal tower bending moment, the light grey scatter plot in Figure 3 b), which show the
results that are obtained with the sea state measurements configuration, is wider than the dark
grey scatter, that represents the results of the best accelerometer configuration. The significant
improvement in estimation accuracy, with absolute values given in Table 3, are expected due to
the aerodynamic loading information that is present in the tower top acceleration measurement.
Moving on to the loads below the water surface, where wave loading is expected to have a
stronger impact, the benefit of using accelerometer data is apparent for the estimation of the
local strain range at the lower leg (brace 1). However, the estimation accuracy for the local
strain range at the upper leg (brace 2) is worse compared to the use of the significant wave
height information. But as argued before, even in this case the use of the accelerometers should
be considered as valuable replacement for sea state measurements. After all, better than nothing:
without acceleration and sea state measurements the estimation error would reach a much higher
value at 18.01 + 60.31. Therefore, it holds for all load quantities, that the use of accelerometer
data is of advantage, as it makes sea state measurements superfluous for the suggested fatigue
load estimation.

6. Conclusions
From three publicly available offshore wind turbine models a generic dataset is derived by
conducting IEC conform fatigue load simulations. These data samples are then used to train and
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Table 3. Mean and standard deviation of the fatigue load estimation error [%] for two neural
network input configurations with data from one year of operation of the AREVA M5000.

twr. base strain strain
bending moment at brace 1 at brace 2
sign. wave height 8.46 4 38.90 5.53 £ 22.66 2.13 £15.73
twr. top & b.s.l. acc. 0.51£7.73 2.98 +£16.80 5.77 £ 26.89

evaluate neural networks for fatigue loads estimation. A method has been presented that allows
to easily determine weather, with a given standard data configuration, sea-state measurements
are dispensable by additional accelerometer data. For three common sub-structure types,
monopile, jacket and tripod, it has been shown that with accelerometers even a higher estimation
accuracy might be achievable. Furthermore the results obtained from simulation studies, suggest
that the characteristic interaction of waves with the sub-structures demands a specialized load
monitoring system design with accelerometer placements that depend on the load quantities to
be estimated. The optimal placement might be chosen advantageous in terms of accessibility
for maintenance. Finally, the recommendations are applied to a standard data based load
monitoring system for field data from the AREVA M5000 at ”alpha ventus” which demonstrates
the feasibility of a load monitoring system without the need of sea state measurements.
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