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Abstract.
An Actuator Disk (AD) model is implemented in the CFD platform OpenFOAMR© with

the purpose of studying the characteristics of the turbulent flow in the wake of the rotor of
a horizontal-axis wind turbine. This AD model is based on the blade-element theory and it
employs airfoil data to calculate the distribution of forces over the disk of a conceptual 5 MW
offshore wind turbine. A uniform, non-turbulent flow is used as inflow so the turbulence is only
produced in the wake of the AD. Computations are performed using Large-Eddy Simulations
(LES) to capture the unsteady fluctuations in the flow. Additionally, a classic Smagorinsky
Sub-Grid Scale (SGS) technique is employed to model the unfiltered motions. This new AD
implementation makes use of a control system to adjust the rotational velocity of the rotor
(below rated power) to the local conditions of the wind flow. The preliminary results show that
the wake characteristics are influenced by the force distribution on the disk when compared to
the wake produced by a uniformly loaded AD. Also, we observe that the simulated rotor reacts
correctly to the introduction of the control system, although operating below the optimal power.

1. Introduction
Due to reduced availability of ideal sites (flat and obstacle free) as well as to economic
profitability, wind turbines can be located close to each other in wind farms. This causes
interference problems which reduce the efficiency of the array. In particular, the wind turbine
wakes increase the level of turbulence and cause a momentum defect that may lead to an increase
of the mechanical loads and to a reduction of the power output [1]. Therefore, it becomes
important to characterize the turbulence field produced by the turbines when interacting with
the Atmospheric Boundary Layer (ABL) or other turbines. The first part of the characterization
process is an adequate modelling of the turbine. One of the most recurred techniques to
model the rotor is the Actuator Disk (AD) in which the rotor is represented as a permeable
surface where a distribution of forces acts upon the flow. In its simplest formulation, the AD
comprises a surface of uniform loading modelled by one-dimensional forces in the streamwise
direction. This has been proved computationally affordable and sufficient to reproduce the
turbulence characteristics of the far wake [2]. Conversely, it has also been observed that
the inclusion of non-uniform loading and rotation leads to a considerable improvement in the
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prediction of the mean velocity and turbulence intensity in the near wake [3], [4]. On the
other hand, a detailed characterization of the turbulence requires a model capable of resolving
the turbulence fluctuations, so Large-Eddy Simulations (LES) are employed. Similar studies
have been performed with the Actuator Line (AL) model that permits a greater detail in the
reproduction of the aerodynamic features of the rotor, overcoming the problem of the lack of
tip vorticity reproduction of the AD [5],[6], [8]. Despite of these advantages, the AL (as well
as the actuator surface) is still too computationally expensive to be used in the simulation of
wind farms. Furthermore, turbulence features in the far wake are less affected by the precision
of the aerodynamics of the rotor [9]. In consequence, the characterization of individual wakes
employing AD is a subject of ongoing interest in the wind energy community. The present study
introduces preliminary results of an implementation of the AD in OpenFOAM R© where loading
and torque are calculated using the blade-element theory [10] with a control system modelled
after the one presented by Breton et al. [11] to regulate the rotational velocity. These results
are compared to those obtained using a uniformly loaded AD.

2. Model description
2.1. Flow model
In the Large-Eddy Simulations (LES), the large eddies (the energy-containing motions) are
resolved, whereas the effects of the smaller eddies are modelled. This is performed by
decomposing the Navier-Stokes equations into a filtered (or resolved) component (ui(x, t)) and a
residual (or sub-grid scale, SGS) component. The resulting LES momentum equation is written
as (see [12]):

∂ uj
∂t

+
∂ ui uj
∂xj

= −1

ρ

∂ pm
∂xj

+ ν
∂2 uj
∂xi∂xj

−
∂τ rij
∂xi

, (1)

where τ rij is the anisotropic residual stress tensor and is given by τ rij ≡ τRij − 2
3krδij . τ

R
ij is the

residual stress tensor τRij ≡ uiuj − ui uj , where kr is the residual kinetic energy and pm is the

modified pressure. The filtered continuity equation is ∂ui
∂xi

= 0. In this work, the effect of the

residual scales is parametrized following the classic Smagorinsky model [13]. In this manner,

the SGS stress tensor is related to the filtered rate-of-strain tensor Sij = 1
2

(
∂ ui
∂xj

+
∂ uj
∂xi

)
by

means of τ rij = −2νsgsSij , where the subgrid viscosity is calculated as νsgs = `2s(Sij Sij)
1/2 =

(CS∆)2 (Sij Sij)
1/2. In this way, the Smagorinsky length-scale `S is assumed to be proportional

to the Smagorinsky coefficient CS and to the filter width ∆ which is obtained from the local
cell length ∆ = (∆x∆y∆z)

1/3. The value of CS is set to 0.168. Following this notation, time
averages will be indicated with brackets, 〈ui〉, whereas fluctuating velocities will be written with
primes, u′i .

2.2. Actuator disk
The rotor of a horizontal-axis wind turbine is modeled as an Actuator Disk (AD), where the
effect of the blades in the wind flow is reproduced by forces distributed over a disk. The AD
model does not consider the location of the blades at a given time to calculate these forces.
Instead, the load of the turbine is taken as a time averaged quantity in the azimuthal direction.

Two different AD concepts are implemented in the course of our work with the goal of
performing comparisons of the turbulence characteristics in their wakes. In the first case, it is
assumed that the forces over the AD are only in the axial direction and are distributed uniformly
over the disk. If U0 is the uniform inflow velocity, the force is calculated as:

Fx =
1

2
ρU2

0ACT (2)

The Science of Making Torque from Wind 2012 IOP Publishing
Journal of Physics: Conference Series 555 (2014) 012081 doi:10.1088/1742-6596/555/1/012081

2



where A is the area of the disk and CT is the thrust coefficient (for CT calculation, see section
3). In the second approach, the forces are calculated following the blade-element theory [10],
where the lift and drag are obtained from tabulated airfoil data. In this formulation, the forces
per unit area acting on the AD are calculated from

dF =
1

2
ρu2rel

Bc

2πr
(CLel + CDed)dA (3)

where B is the number of blades and CL, CD are the lift and drag coefficients that are evaluated
in function of the angle of attack, with el and ed being the unit vectors pointing in the directions
of lift and drag, respectively. The factor B

2πr is commonly derived from spatially integrating over
an annular element of area dA = 2πrdr [10]. It is convenient to observe that some authors have
also derived the above expression by considering the average load during the time it takes the
blades to cover the path within an area element. In effect, as it was shown in [14] and [15],
considering the time the blades spent over any given control volume, the average force on the
rotor is exactly equal to eq. (3). An interesting result of this formulation is that the force can
be calculated with this expression independently from the shape of the cells in the grid. As a
result, the grid can be formed by squared cells which is highly desired in order to maintain a
uniform grid-filter size in LES. This formulation is especially relevant as, on the other hand,
similar works make use of intermediate steps where a polar mesh is defined only to calculate the
force distribution on the AD before projecting it back to the squared mesh [8], [16].

In the case of the AL, Troldborg [6] has observed that the use of a polar mesh does not largely
affect the flow solution. Unlike the aforementioned AD implementations, the conception used
here does not consider a special treatment for the cells at the edge of the AD or a distribution
of forces in the axisymmetric direction (commonly performed using the convolution of eq. (2)
with a Gaussian expression). A model that includes an approach for these two issues will be
included in a later stage. It is important to note that it is expected that the inclusion of a force
distribution scheme will have an impact on the flow solution only in the vicinity of the AD.

This AD implementation also includes the use of a control system for the rotational velocity
with respect to the local conditions, henceforth called controller. This method aims at simulating
how the turbine would react in a real operation below rated power, this is, for velocities under
11.4 m/s (with a cut-in velocity is 3 m/s). Although not strictly necessary in the present case,
where a uniform inflow is used, the controller is implemented here as one of the first steps in
the development of a more versatile model. Indeed, as it is expected that future work will
involve the use of turbulent inflows, this type of control mechanism will be a requirement. The
implementation of the controller used here follows the one used in [11] and it makes use of the
total aerodynamic torque Taero calculated from eq. (3) for a given windspeed and rotational
velocity Ω as well as its comparison to the torque produced by the turbine generator Tgen. In
this way, if Taero is different from Tgen at a given time, an acceleration ∆Ω in the rotor will
result according to

Taero − Tgen ≈ (Irotor + Igen)
∆Ω

∆t
, (4)

where Irotor and Igen are the inertia of the rotor and generator, respectively, and ∆t is the
time-step. For incoming velocities above rated power, a controller that uses a pitch control
system should be considered. Such a system will be incorporated in the future. It should be
noted that the data of torque vs. generator speed used in this work is taken directly from [17],
where the figures were calculated using a blade-element momentum method. As these values
are calculated with a different scheme than the flow solver used in this work, some differences
might arise regarding the torque produced for the given inflow velocity and tip-speed-ratio. In
effect, analogously to what is done in [11], this curve should be calculated using the flow solver
and the AD implementation used in our computations to improve the accuracy of the results.
These calculations will be carried out in subsequent work.

The Science of Making Torque from Wind 2012 IOP Publishing
Journal of Physics: Conference Series 555 (2014) 012081 doi:10.1088/1742-6596/555/1/012081

3



Lz

Lx

Ly

Uniform 
 x-cells

Uniform 
y,z-cells

Actuator
   disk

Figure 1. Scheme of the computational domain

2.3. The reference turbine model
Airfoil parameters are obtained from the concept of a 5 MW offshore wind turbine designed
by the National Renewable Energy Laboratory (NREL) [17]. This is a conventional horizontal-
axis, three bladed (twisted and tapered), pitch-controlled and variable speed turbine created
from design information of other turbines, mainly the REpower 5M. The radius of the rotor
is 63 m with a maximum power coefficient of CP = 0.482, found when the tip-speed-ratio has
a value of λ = 7.55 and the blade pitch angle is zero. Information regarding the torque vs.
generator speed response of the turbine for a fixed inflow velocity of 8 m/s is also contained in
that report. These data are then used to regulate the angular velocity of the turbine according
to eq. 4, as previously indicated.

3. Numerical Setup
The computational domain consists of a rectangular mesh of size Lx×Ly ×Lz = 30.4× 17× 17
R that corresponds to the streamwise, vertical and spanwise directions. A central region where
cells are equally spaced in the flow direction x starts at 6.4 R from the inlet and continues
until the outlet. The region is separated from all the lateral boundaries by a distance of
6.9 R. Outside this region, the cells stretch towards the boundaries with an aspect ratio of
∆xmax/∆xmin = 9.328 and ∆ymax/∆ymin = 10.339. The total number of cells in each direction
is Nx ×Ny ×Nz = 256× 64× 64. The AD is located at 8 R from the inlet, in the center of the
y− z plane, so the wake develops within the region of uniform cells. According to the resolution
of this region, the volume of the disk is approximated by a set of 316 cells. A grid with the same
characteristics has been used for the studies of Breton et al. [11]. A uniform inflow at U0 = 8
m/s is set at the inlet. The lateral boundaries are set to periodic while the outlet employs a

convective flow condition, e.g. ∂φ
∂t + un

∂φ
∂n = 0 (un is component of the instantaneous velocity

normal to the outlet) for any variable φ in the normal direction to the boundary. The simulation
of the AD with rotation has an initial value of Ω = 10 RPM. The average thrust found with these
calculations is later used as the fixed value imposed in the case of the uniform thrust AD, which
corresponds to CT = 0.61. Simulations are carried out using OpenFOAM 2.1.0, a second-order
finite-volume open-source CFD code. The Quadratic Upstream Interpolation for Convective
Kinematics (QUICK) scheme is used for the convective terms, which in OpenFOAM is third-
order accurate when the mesh is uniform. Simulations are run with a Courant-Friedrichs-Lewy
(CFL) number of 0.25 and are let run during 40 flow times (Lx/U0) to let the turbulence to
develop before the sampling of data. Measurements are taken during 20 longitudinal flow times.

4. Preliminary results and discussion
The use of LES coupled with the classic Smagorinsky SGS model in OpenFOAM has been
tested by previous authors [18], where the validity of the transfer of turbulent kinetic energy
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Figure 2. Rotational velocity, torque and power coefficient results for the NREL 5 MW turbine.
Results are compared to those reported as being reached at the maximum power operation
(straight dashed-lines). Only the first two flow times are shown as the values reached here are
maintained throughout the simulation.

from the large to the small eddies has been verified by performing simulations of decaying
isotropic turbulence and comparing the results with the experiments of Comte-Bellot and Corrsin
[19]. Results indicate that the standard Smagorinsky-LES model in OpenFOAM is capable of
simulating the turbulent-cascade by reproducing the respective Kolmogorov spectra.

The adequate size of the computational domain is verified by means of calculating the mass
flow that leaves from the lateral boundaries and from the outlet with respect to the one set at
the inflow. To this aim, simulations of the AD with rotation were performed on a 50% smaller
and on a 50% larger computational domains with respect to the one previously described. In all
the cases, it was found that the flow exiting from the sides was much less than 1% of the inlet
flow. As for the number of cells, grids with a similar resolution have been found adequate for
the simulation of wind turbines in the ABL flow using the same AD models in LES simulations
[4]. A grid convergence study will be performed at a later stage.

The results are first compared to the rotational velocity, torque and power indicated in the
technical report of the turbine modelled. In Figure 2 we can observe the evolution of these values
(as a result of the adjustments derived from the controller) compared to the values exhibited
during the operation at maximum power, where our turbine operates with a tip-speed-ratio of
λ = 6.93, lower than expected. The causes of this discrepancy are thought to be related to:
a) the values of torque vs. generator speed response used for the controller are not accurate
(as discussed in section 2.2) and b) the lack of an axial force distribution around the AD, that
affects the response of the controller as the local velocities are not accurately represented (due
to the oscillations they exhibit at the AD location).

Figures 3 and 4 show a comparison of the development of the wake downstream of the AD.
The characteristic turbulent structures appear only close to the end of the domain, at about 15
R from the disk in both cases. More complete actuator models have shown an earlier breaking
of the wake into turbulent structures, which is only natural as the AD cannot reproduce the
tip vortices that have been seen to contribute to trigger instabilities in the wake [6]. It is also
observed in [6] that finer meshes allow tip vortices to break closer to the rotor. Moreover,
it is argued also that QUICK differencing schemes suffer from numerical diffusion (artificial
viscosity) that could prompt the loss of details on the turbulent structures [7]. Alternatives
that offer advantages with respect to the QUICK and central difference schemes in OpenFOAM
are currently considered. A combination of both schemes has been used successfully in similar
works [8] .

Figure 5 shows the comparison of the time-averaged velocity profiles at different downstream
distances from the disk. Clearly, the uniformly loaded AD produces smaller velocities behind the
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Figure 3. Contours of instantaneous vorticity magnitude of the wake development with the
uniformly loaded AD (top) and the AD with rotation (bottom) at 20 Lx/U0. Images at Lz = 0.
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Figure 4. Comparison of the instantaneous, streamwise velocity field for the uniformly loaded
AD (top) and the AD with rotation (bottom) at 20 Lx/U0. Images are take at Lz = 0

rotor than the rotating AD. Moreover, the velocity profiles obtained from the AD with rotation
show an acceleration of the flow in the central part of the wake. This occurs since the airfoil
data provided for the turbine modelled covers also the central part of the rotor, so the prescribed
values of lift and drag coefficients in that zone determine a weak thrust. In addition, in the same
Figure it is observed that even the position of the last measurement at 20 R is not far enough
from the disk to allow the convergence of the wakes produced by the two AD implementations.

Lastly, the comparison of the Reynolds stresses sampled at 3 locations of the wake for both
models is shown in Figure 6. As it can be seen there, the values of the Reynolds stresses around

the shear-layer (except
〈
u′1 u

′
2

〉
) are appreciably larger in the case of the uniformly loaded AD.

This is in accordance to the larger velocity deficit in the wake of this rotor model compared to
that in the wake of the AD with rotation, as seen in Figure 5. In addition, unlike the case of
uniform load, in the AD with rotation there is a larger variation in the values of the stresses in
the central region of the wake. This can be attributed to a combination of the effects of rotation
and the distribution of forces presented in the rotating AD model. In general, 〈ui ui〉 increases
its value with the distance from the AD, an indication of an increase of turbulence downstream
in the wake. This observation is also supported by the increase of turbulence kinetic energy k,
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Figure 6. Reynolds stresses as a function of the vertical position, time-averaged during 20
Lx/U0. Left: uniformly loaded AD. Right: AD with rotation. Data have been sampled at 3 R,
10 R and 20 R behind the AD (positions top to bottom). Note that the different scales are used
to better appreciate the local variation of the stresses.

also shown in Figure 6. We should make note that even at 20R behind the AD, neither k nor
〈ui ui〉 have reached their maximum value.

5. Conclusion and future work
Two different actuator disk models have been implemented in the CFD code OpenFOAM. In
the first case, an AD with a fixed thrust uniformly distributed over the surface of a disk is
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modelled. In the second case, an AD where the force distribution is calculated according to the
blade-element theory is simulated. Furthermore, a control system that reproduces the response
of the rotational speed of the rotor to the current wind conditions is implemented following the
implementation shown in [11]. A rotor was modelled after the geometric parameters and airfoil
data of the NREL 5MW reference wind turbine.

The first series of results obtained from the implementation of the turbine with rotation shows
that the controller indeed changes the rotational velocity of the rotor, affecting the torque and
the power produced. Our results showed that the turbine operates with a lower power output
than its optimum. It is possible that the lack of a force distribution scheme to smooth the
velocity discontinuities affects the calculations. Other causes of these discrepancies are being
investigated. A review of some features of the turbulent wake is performed. It is observed that
the velocity fluctuations along the vertical profiles of the wake are larger in the case of the
uniformly loaded AD.

The testing of the AD using blade-element method is in its early stages of verification, so the
material presented here constitutes a preliminary set of results of an ongoing work.
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