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Abstract. Based on a reduced-order, dynamic nonlinear wind turbine model in Takagi-
Sugeno (TS) model structure, a TS state observer is designed as a disturbance observer to
estimate the unknown effective wind speed. The TS observer model is an exact representation
of the underlying nonlinear model, obtained by means of the sector-nonlinearity approach.
The observer gain matrices are obtained by means of a linear matrix inequality (LMI) design
approach for optimal fuzzy control, where weighting matrices for the individual system states
and outputs are included. The observer is tested in simulations with the aero-elastic code FAST
for the NREL 5 MW reference turbine, where it shows a stable behaviour in turbulent wind
simulations.

1. Introduction
Takagi-Sugeno (TS) models provide a useful and uniform framework for nonlinear controller and
observer design for dynamic systems. Originally introduced in the context of fuzzy systems [1],
TS models are weighted combinations of linear submodels and can either be derived from input-
output data via system identification [1, 2] or from mathematical models of nonlinear systems.
Methods based on solving linear matrix inequalities (LMIs) allow for implicit stable controller
and observer design for TS models [3, 4, 5].

In this paper, a TS observer is designed as a disturbance observer to estimate the unknown
effective wind speed from the available measurable system outputs. This observer has been used
along with a fault reconstruction and fault-tolerant control module, where the wind speed is
needed as an input signal [6, 7].

Other methods have been applied to wind speed estimation in the literature. See for example
[8], where Kalman filtering, extended Kalman filtering and the Newton-Raphson method are
used and compared. Other dedicated algorithms have been applied, too. In [9], a state-observer
for the rotor speed is combined with a PI controller to estimate the aerodynamic rotor torque.
The effective wind speed is then reconstructed from the estimated torque signal via inversion of
the aerodynamic model. While being able to yield good wind speed estimates, these methods
also have certain detriments. The Kalman Filter is only applicable to linear state-space models.
Thus, estimating the wind speed for a wind turbine using a Kalman Filter only yields good
results in the region of one operating point of a linearised wind turbine model. A possible
remedy is provided by the extended Kalman filter, however, it is not possible to verify formal
stability for the error dynamics, since the extended Kalman filter is an adaptive method.
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By contrast, for observers in TS structure, the formal stability of the error dynamics can, at
least in principle, be shown using linear matrix inequalities (LMI). The TS observer structure
can also be extended to a TS sliding mode observer used for fault reconstruction [10, 6, 7].
For these reasons, and to achieve a certain level of uniformity within the design methods for
different modules of a fault-tolerant control scheme, an observer in TS structure is used here for
the estimation of the effective wind speed.

This paper is organised as follows. In section 2, the reduced-order wind turbine model
is introduced. In section 3, the TS model structure is introduced along with an illustrating
example. The observer is derived in TS structure and the method to obtain the observer gain
matrices is discussed. Simulation results are presented in section 4.

2. Wind Turbine Model
For the purpose of model-based control design, reduced-order models like those in [11, 12] are
appropriate, since they capture only the dominant system dynamics that are directly influenced
by the control action [12]. A reduced-order model inspired from [12], which was derived in TS
structure in [13], is briefly introduced in this section and serves as a basis for the observer design
in section 3. Furthermore, the model is used as a simulation environment. Additionally, the
aero-elastic code FAST by NREL [14] is used for the simulation studies, in order to test the
observer with a more realistic wind turbine model (see section 4).
Four degrees of freedom are considered for the reduced-order model: rotor and generator rotation
angles (θr, θg), fore-aft tower top deflection yT and flapwise blade tip deflection yB. The
equations of motion, which describe the dynamics of the mechanical model, are obtained as

(mT + NmB) ÿT + NmB ÿB + dT ẏT + kT yT = FT (1)

NmB ÿT + NmB ÿB + NdB ẏB + NkB yB = FT (2)

Jr ω̇r + dS (ωr − ωg) + kS θs = Ta (3)

Jg ω̇g − dS (ωr − ωg) − kS θs = −Tg , (4)

where N denotes the number of rotor blades, R the rotor radius, mT and mB the effective
tower and blade masses, kT and kB the effective stiffness coefficients for the tower top and
blade tip deflection, dT and dB the damping coefficients for the respective tower and blade
dynamics. θs = θr− θg denotes the shaft torsion angle, ωr and ωg the rotor and generator speed
respectively. FT and Ta denote the aerodynamic rotor thrust and torque respectively and Tg
the applied generator torque. An ideal gearbox is assumed, where the gearbox ratio is set to 1
for reasons of simplicity.
A lateral tower bending is not considered here. Furthermore, the effect of gravity on the blade
bending is neglected. These assumptions are common when using reduced-order models for
controller or observer design [12].

In Equation 2, the dynamics of all N blades is treated equally, i.e., a uniform blade dynamics,
reflected in only one deflection degree of freedom yB is considered. As a consequence, collective
pitch is considered. The (collective) pitch dynamics can be incorporated into the wind turbine
model as a first-order delay model, τβ β̇ + β = βd , where βd denotes the demanded pitch angle
and τβ the delay time constant.

Introducing the state vector x = (yT yB θs ẏT ẏB ωr ωg β)T and the input vector

u = (βd Tg)
T of the two actuator signals, the system of dynamic equations (1) to (4) including

the pitch dynamics can be transformed into a state-space form:
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ẋ1 = x4 (5)

ẋ2 = x5 (6)

ẋ3 = x6 − x7 (7)

ẋ4 = 1
mT

(− kT x1 + N kB x2 − dT x4 + N dB x5) (8)

ẋ5 = kT
mT

x1 − mT+NmB
mB mT

kB x2 + dT
mT

x4 −
(

1
mB

+ N
mT

)
dB x5 + 1

NmB
FT (9)

ẋ6 = − 1
Jr

(dS (x6 − x7) + kS x3) + 1
Jr
Ta (10)

ẋ7 = 1
Jg

(dS (x6 − x7) + kS x3) − 1
Jg
u2 (11)

ẋ8 = − 1
τ x8 + 1

τ u1 , (12)

which can also be written in matrix form as

ẋ = A x + B u + g(x, v) , (13)

with system matrix A, input matrix B and a nonlinear state vector g(x, v) [13].

The aerodynamic rotor thrust and torque are given by FT = ρπR2

2 CT (λ, β) v2 and

Ta = ρπR3

2 CQ (λ, β) v2, where R denotes the rotor radius, ρ the air density, v the wind speed
and λ = R ωr

v the tip speed ratio. CQ and CT are the aero maps for the rotor thrust and torque
coefficients. Due to the expressions for FT and Ta, the state-space model (13) is nonlinear.

2.1. Model Parameters
The model parameters for the turbine model (13) are based on the NREL 5 MW reference
turbine [15]. The parameters are listed in Appendix B, some of which can be directly taken
from [15] or example input and log files of FAST simulation runs of the 5 MW reference turbine.

2.1.1. Structural Parameters The dynamics of fore-aft tower bending and flap-wise rotor blade
bending are reduced to simple spring-mass-damper systems for the tower top and blade tip
deflections. The respective tower stiffness coefficient kT is derived by means of a direct stiffness
method common in structural mechanics calculations. The tower consisting of several segments
is first transformed into an equivalent bending beam model. Afterwards, the bending stiffness
of the effective beam model is transformed to an equivalent translational stiffness of the tower-
nacelle dynamics (see Appendix A).
While the tower stiffness parameter could be obtained and validated against the FAST simulation
of the 5 MW reference turbine, there are still uncertainties about the determination of the blade
parameter kB, which is therefore adjusted according to FAST simulation results [13].

The effective mass mT for the tower-nacelle motion in equations (8), (9)) is estimated as
mT = mRotor +mNacelle +0.25mTower, which has proven a reasonable assumption [16]. Similarly,
the effective blade mass for the blade tip motion is estimated as mB = 0.25mBlade.

2.1.2. Aerodynamic Damping The aerodynamic rotor damping in fore-aft direction, which can
be approximated as d11 (λ, β) = 0.5 ρ π R2 v d∗11 (λ) [17], is taken as an estimate for the damping
parameter dT of the tower-top motion in equations (8), (9). The dimensionless parameter
d∗11 (λ, β) depends on the tip speed ratio and on the pitch angle and shows a similar behaviour
for different turbine sizes [17]. Estimating d11 (λ, β) accordingly for different stationary points of
the 5 MW reference turbine for the whole operating range of the turbine yields values between
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3 · 104 Ns
m and 10 · 104 Ns

m . Here, the tower damping parameter is set to a constant value of

dT = 7 · 104 Ns
m . The blade damping parameter is set to dB = 2 · 104 Ns

m .

2.1.3. Aero Maps The aero maps for the rotor thrust (CT ) and torque coefficients (CQ) were
extracted from FAST simulation runs of the 5 MW reference turbine [13]. Alternatively, they
can be approximated using nonlinear functions [13].

3. Observer in Takagi-Sugeno Model Structure
In this section, a state-observer based on the nonlinear model (13) is designed to reconstruct the
unknown wind speed from the measurable system states. The standard Luenberger observer for
linear systems is a state-space model including a feedback of the output error ey = y− ŷ, where
ŷ is the reconstructed output signal:

˙̂x = A x + B u + L (y − ŷ) , ŷ = C x̂ . (14)

As the wind turbine model is nonlinear, a linear observer like (14) cannot be used in the whole
operating range. Therefore, an observer in Takagi-Sugeno model structure is used.
A state-space model in TS structure is of the form

ẋ =

Nr∑
i=1

hi(z) (Ai x + Bi u) , y =

Nr∑
i=1

hi(z) Ci x , (15)

where Ai, Bi and Ci are constant matrices and hi are nonlinear functions of the premise variables
z, which can depend on the system states and inputs and on external variables. Nr denotes the
number of linear submodels. The membership functions hi fulfill the relation

∑Nr
i=1 hi = 1. The

linear submodels can be derived from the original nonlinear model using local Taylor linearisation
or by applying the sector nonlinearity approach [18, 4], whereby an exact representation of the
nonlinear model is obtained. This approach is used in this paper for the derivation of the TS
observer model.

3.1. Illustrating Example for a TS-Model
A simple example shall be considered in order to illustrate the derivation of a TS model using
sector nonlinearities.
Consider the dynamic equation of a pendulum of length l with a point mass m driven by an
external torque signal M :

ϕ̈ = −g
l

sin ϕ +
1

ml2
M , (16)

where ϕ denotes the angular displacement of the pendulum and g the gravitational constant.
Introducing the state vector x = (ϕ ϕ̇)T and the input signal u = M , equation (16) can be

written in state-space form as

ẋ =

(
0 1

−g
l
sin x1
x1

0

)
x +

(
0
1

ml2

)
u = A (x) x + Bu . (17)

Obviously, this is a nonlinear model due to the function f (x1) = −g
l
sin x1
x1

. This function can
be written as

f (x1) = w1 (x1) f + w2 (x1) f , where w1 (x1) :=
f (x1)− f
f − f

, w2 (x1) :=
f − f (x1)

f − f
.
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f and f denote the maximum and minimum values of the function f , i.e. the sector boundaries.
However, any real constants c1, c2 could be used instead, as long as c1 6= c2. Using the sector
boundaries is advantageous, since the matrices of the linear submodels, which are used for TS
controller and observer design, thereby contain the domain of the nonlinear system.

From the definition of w1 and w2 it is obvious that w1 +w2 = 1. Thus, the nonlinear matrix
A in (17) can be written as

A (x) =

(
0 w1 + w2

w1 f + w2 f 0

)
= w1

(
0 1

f 0

)
+ w2

(
0 1
f 0

)
= w1 A1 + w2 A2 , (18)

and the whole model in (17) as ẋ =
∑2

i=1 wi(x1) (Ai x + Bu).
The nonlinearity has thus been shifted from the system matrix into the membership functions,
which in this case are equivalent to the weighting functions wi. In the same manner, systems
with more than one nonlinearity can be transformed into a TS model structure by including all
possible permutations of the wi-functions into the membership functions hi. The number Nr of
linear submodels generally is Nr = 2Nl , where Nl is the number of distinct nonlinear functions.
However, if there occur several linear combinations of the same nonlinear function, Nl is not
increased.

3.2. TS Observer
The state-space model (13) is used as a basis for the observer, where either the full model (13)
or submodels of (13) can be used depending on the desired observer model order.

In this paper, only the rotational degree of freedom is incorporated into the observer model
but no torsional, tower and blade dynamics. This model configuration for the observer yields
reasonable results while requiring only the rotor speed as a measurement signal. An extension
of the observer model to include the torsional degree of freedom yields only minor differences in
the simulation results and requires a measurement of the torsion angle, which may be difficult
to achieve for a turbine with gearbox.
In order to estimate the wind speed v with a state observer, v is included into the system state
vector x and a dynamic wind model is added to the system equations. The first-order delay
model from [19] is used, modified by the mean value v̄ of the wind speed, but without a white
noise term:

v̇ = − 1

τv
(v − v̄) , (19)

where the time constant is estimated as τv = 4 s. The mean wind speed v̄ can be calculated
over an appropriate time period (e.g. 10 min) from the anemometer wind measurement, which
is sufficient for this purpose.

Since only the rotational degree of freedom plus the estimated wind speed are considered
for the observer model, the corresponding estimated state vector is x̂ = (ω̂r v̂)T . Since the
first order pitch dynamics adds no information as to the reconstruction of the unknown states,
it is not considered in the observer model. This implies that the demanded pitch angle βd
is not included in the input vector, because there is no linear dependence on βd but only a

nonlinear dependence in CQ

(
λ̂, βd

)
. The mean wind speed v̄ can be included in the input

vector: u = (Tg v̄)T . The output vector contains only the rotor speed: y = y = ωr and the
output matrix is given by C = (1 0). For a real application of the observer, the rotor speed
signal would either have to be measured with high resolution, for example by means of optical
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scanning of nearly continuous barcodes on the main shaft. Alternatively, in a wind turbine with
gearbox, the generator speed signal (corrected by the gearbox ratio) could be used instead.

From the system of nonlinear state-space equations for the wind turbine model (13), it is
straightforward to obtain the nonlinear system matrix and the input matrix for the observer
model including only the rotational degree of freedom and the wind speed:

A (x) =

(
0 f (x̂, βd)
0 − 1

τv

)
, B =

(
− 1
Jr+Jg

0

0 1
τv

)
, (20)

where the nonlinear function f and its minimum and maximum values are given by

f (x̂, βd) = 1
2 Jr

ρ π R3 v̂ CQ

(
λ̂, βd

)
, f = 1.1 · 10−5 1

m s , f = 0.0495 1
m s .

The values for f and f were obtained by estimating the minimum and maximum values of the
wind speed v and the torque coefficient CQ: CQ,max = 0.0751, CQ,min = 0.001, vmax = 60 m

s ,
vmin = 1 m

s . Though vmin and CQ,min are zero in theory, they are set to small positive values to
avoid generating zero entries in one of the TS submatrices.

Employing the same procedure as in section 3.1, the observer model can be obtained in TS
structure:

˙̂x =

Nr =2∑
i=1

hi(ẑ) (Ai x̂ + B u + Li (y − ŷ)) , ŷ = C x̂ , (21)

where the premise variable ẑ now depends on the reconstructed states: ẑ = (ω̂r v̂ βd)
T .

3.3. Observer Gains and Stability
A common means to derive gain matrices for observers in TS structure is by applying the direct
method of Lyapunov in form of linear matrix inequalities (LMI) [5].

In general, the global asymptotic stability of a nonlinear system ẋ = f (x) is guaranteed if
there exists a Lyapunov function V (x) satisfying the conditions V (x) > 0 and V̇ (x) < 0 for all
trajectories. In particular, the system is stable if it is quadratically stable, i.e., if a quadratic
Lyapunov function V = xTPx, with a symmetric, positive definite matrix P, exists.
In that case, for a TS system without an external input (ẋ =

∑Nr
i=1 hi (z) Ai), the condition

V̇ (x) < 0 is equivalent to V̇ = ẋT P x + xT P ẋ = xT
(∑Nr

i=1 hi (z)
(
AT
i P + P Ai

))
x < 0.

Since this condition must hold for all x, the TS system without input is stable if there exists a
common symmetric, positive definite matrix P, such that

AT
i P + P Ai < 0 (i ∈ {1, . . . , Nr}) . [20, 3] (22)

For the TS observer (21), where the membership functions depend on unmeasurable states
(hi = hi (ẑ)), a modified form of the stability condition (22) with an additional LMI can be used
to guarantee the stability of the error dynamics of the observer system [21]:

P (Ai − LiC) + (Ai − LiC)T P ≤ −Q ,

(
Q − µ2I P

P I

)
> 0 , (23)

where Q is a symmetric, positive definite matrix and µ > 0 is a known constant satisfying

∆ (z, ẑ) ≤ µ‖e‖, with e = ‖x − x̂‖ and ∆ (z, ẑ) =
∥∥∥∑Nr

i=1 (hi(z)− hi(ẑ)) (Aix + Bu)
∥∥∥. The

first inequality of (23) is not an LMI but can be recast in LMI form by introducing Ni := PLi
[4]. As condition (23) concerns quadratic stability, it is only a sufficient stability condition, i.e.,
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if it is not fulfilled, no formal statement can be made about the stability or instability of the
considered system [5].

Optimal LMI Observer Design Condition (23) was first used to calculate the observer gains.
However, this observer hardly had any modifying effect on the wind speed compared to the mere
wind model (19). A possible remedy is to modify the gain matrices with a weighting matrix, such
that the gains influencing the wind speed v̂ are increased. A more systematic way is to make
use of optimal fuzzy control concepts, where weighting matrices for the system states/outputs
and inputs and a quadratic cost function can be included in the LMIs [22].
For the observer design in this paper, theorem 5 from [22], which is applicable for controller
design, was modified to be used for the dual TS-systems

(
AT
i ,C

T
)
. The observer gain matrices

Li are then obtained from the resulting gain matrices Ki as Li = KT
i . The obtained gain

matrices are given in Appendix C.
The formal stability of the error dynamics could not be verified with condition (23), which

is a conservative condition due to the assumption of un unstructured uncertainty [5]. However,
the observer shows a stable behaviour in the FAST simulation, even for large initial observer
errors (see section 4, Figure 2).

4. Simulation Results
The observer was tested in turbulent wind simulations with both the nominal model (13) and
FAST. To control the rotor speed, a state-space controller in TS structure, based on Taylor-
linearised models was used [7]. To examine the observer in different regions, simulations were
conducted with mean wind speeds of 8, 18, and 24 m/s. In Figure 1, results are shown for a
mean wind speed of 18 m/s. One can see that in both simulation models, an almost perfect
reconstruction is achieved for the rotor speed. For the wind speed, a pretty good reconstruction is
achieved in the nominal model simulation (see Figure 1a), where only very fast changes and peaks
are not reflected in the reconstructed wind speed. When looking at the wind speed reconstruction
in the FAST simulation (Figure 1c), the reconstruction quality is seemingly inferior. However,
when interpreting Figure 1c, it is important to remember that the observer estimates the rotor
effective wind speed, i.e. a virtual single point wind speed that causes the same variations in
wind torque as the corresponding 3D turbulent wind field [23]. Although the calculations in
FAST are based on the 3D wind field, the wind speed output from FAST (blue curve in Figure
1c) shows the nominal downwind component of the hub-height wind speed, so the two wind
speed curves in Figure 1c are not directly comparable. The direct comparison of Figures 1a and
1c shows that the influence of the 3D wind field in the FAST simulation leads to an averaging
effect compared to the nominal model simulation, where a uniform (hub-height) wind speed acts
on the rotor.

The results in Figure 1 were obtained using the same initial rotor speed values for the
simulation model and the observer. To further test the observer stability, a simulation was
conducted with larger initial observer errors (see Figure 2). As can bee seen, apart from a
larger initial transient peak in the reconstructed wind speed, a stable observer behaviour is still
obtained.

Two further simulations were conducted with mean wind speeds of 24 m/s (Figure 3) and 8
m/s (Figure 4). In both cases, the same pattern can be observed that the difference between
the reconstructed wind speed and the hub-height reference wind speed is much larger in FAST
simulations than in the nominal model simulations, which is due to the averaging effect of the
3D wind field in FAST.
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(a) Nominal model simulation; wind speed;
σ = 0.73 m/s
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(b) Nominal model simulation; rotor speed;
σ = 2.4 · 10−4 rad/s
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(c) FAST simulation; wind speed;
σ = 1.45 m/s
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(d) FAST simulation; rotor speed;
σ = 3.9 · 10−4 rad/s

Figure 1. Turbulent wind simulations (mean wind speed: 18 m/s, turbulence intensity: 15
% (NTM), Kaimal model). Blue: states from simulation; red: estimated states; initial values:
ωr,0 = ω̂r,0 = 1.267 rad/s, v̂0 = 12 m/s. σ denotes the standard deviation between the simulation
states and the estimated values.
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(a) Wind speed; σ = 6.5 m/s
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(b) Rotor speed; σ = 0.014 rad/s

Figure 2. FAST simulation with turbulent wind (mean wind speed: 18 m/s, turbulence
intensity: 15 % (NTM), Kaimal model). Blue: states from simulation; red: estimated states;
initial values: ωr,0 = 1.267 rad/s, ω̂r,0 = 0 rad/s, v̂0 = 1 m/s. The initial peak in the
reconstructed wind speed is not fully shown here, in order to keep the differences between v
and v̂ visible in the rest of the time-series.
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(a) Nominal model simulation; σ = 1.3 m/s
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(b) FAST simulation; σ = 2.5 m/s

Figure 3. Turbulent wind simulations (mean wind speed: 24 m/s, turbulence intensity: 14 %
(NTM), Kaimal model). Blue: wind speed from simulation; red: estimated wind speed; initial
values: ωr,0 = ω̂r,0 = 1.267 rad/s, v̂0 = 12 m/s.
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(a) Nominal model simulation; σ = 0.8 m/s
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(b) FAST simulation; σ = 1.3 m/s

Figure 4. Turbulent wind simulations (mean wind speed: 8 m/s, turbulence intensity: 20 %
(NTM), Kaimal model). Blue: wind speed from simulation; red: estimated wind speed; initial
values: ωr,0 = ω̂r,0 = 1.267 rad/s, v̂0 = 12 m/s.

5. Conclusion
In this paper, a nonlinear observer in Takagi-Sugeno structure was designed to estimate the
effective wind speed from the measurable states of a dynamic wind turbine model. Although
formal stability of the observer in terms of LMI conditions could not be obtained, the observer
shows a stable behaviour when used with the aero-elastic simulation code FAST. The observer
yields reasonable wind speed reconstruction results in the complete operating region of a wind
turbine, although the reconstruction quality slightly decreases for lower wind speeds.

Acknowledgments
This work was conducted within a research project funded by the German Federal Ministry of
Education and Research under grant no. 17N1411.

Appendix A. Derivation of Effective Tower Stiffness
The direct stiffness method allows to calculate eigenfrequencies and eigenmodes of structures
consisting of several segments of defined length, mass and bending stiffness. For each segment,
the characteristic forces and displacements can be calculated from the previous segment by
means of a transfer matrix depending on the frequency of the structure [24]. Applying the
total transfer matrix as the product of the individual transfer matrices, as well as the boundary
conditions for the rigid and the free ends of the beam, yields a homogeneous system of equations
for the displacements at the top of the total structure, which is fulfilled for the eigenfrequencies
of the structure. In order to calculate the respective equivalent bending stiffness, it is sufficient
to find the first eigenfrequency ω1. For the tower, it was calculated as ω1 ≈ 2.14 rad

s and has

been validated with the NREL-Software BModes [25] (ω1,BModes ≈ 2.08 rad
s ). The connection to

the equivalent bending stiffness Btotal is

ω1 = κ21

√
Btotal
µtotal

⇒ Btotal =
ω2
1 µtotal
κ41

≈ 4.44 · 1011 Nm2 , (A.1)

where κ1 = 1.423 ·10−2 is a factor that can be found in standard mechanics textbooks and µtotal
is the total mass per length. Finally, the equivalent bending stiffness can be transferred into a
translational spring stiffness with simple equations for the deflection w of the beam (with total
length l) and spring, where the applied force F corresponds to the rotor thrust force FT :

w =
F l3

3Btotal
(beam), F = k w (spring) ⇒ k =

3Btotal
l3

≈ 1.98 · 106
N

m
(A.2)
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Appendix B. Model Parameters
N = 3, R = 63 m, ρ = 1.225 kg/m3, Jr = 38759227 kg m2, Jg = 5025347 kg m2,
ks = 867637000 Nm, ds = 6215000 Nm s, kB = 40000 N/m, α = 0.02 m−1, kT = 1.98 · 106 N/m,
mBlade = 17740 kg, mTower = 347640 kg, mRotor = 110000 kg, mNacelle = 240000 kg, τv = 4 s,
mT = 436865 kg, mB = 4435 kg, dT = 7 · 104 Ns

m , dB = 2 · 104Ns/m, rB = 21.975 m, τ = 0.1 s

Appendix C. Observer Gain Matrices
The following weighting matrices (W for the system states and R for the system outputs) were
used for the optimal LMI observer design: W = diag

(
W1/ω

2
r,max W2/v

2
max

)
, R = R1/ω

2
r,max ,

with W1 = 15.708, W2 = 60 ·107, R1 = 0.157 and the estimated maximum values vmax = 60 m/s,
ωr,max = 1.5708 rad/s to normalise the chosen weights.
For the optimal LMI design procedure, the initial observer error is needed, which was set to
e0 = (0 0)T . This is of course an idealisation. However, as can be seen from the simulation
results, the observer is stable also for ‖e0‖ > 0. The following observer gain matrices were

obtained: L1 = (93.1 6731.7)T , L2 = (93.1 6731.7)T . L1 and L2, displayed here with
rounded values, are not equal but differ by less than 0.001 %.
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