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Abstract. A possibility to analyze low-barrier chemical reactions induced by electron beam is 

proposed within the framework of generalization of classical Kramers approach. A relationship 

for calculation of chemical reaction rate  is received for potential barriers comparable with 

energy of system. It has been shown that results of our approach agree with results of 

dynamical modeling within 2% not only in the area of applicability of classical (Kramers) 

approach but also more widely. 

1. Introduction 

At the present time fair quantity experimental [1-3] and theoretical [4-6] studies is devoted to 

investigation of physical properties of nonequilibrium plasma. Interest in this kinds of studies is the 

possibility to employ of results in perspective applied directions: transportation of electron beams in 

gas of variable pressure,  plasma-chemical gas cleaning, synthesis of nanoparticles and others. One of 

the possible variant of nonequilibrium plasma formation is the influence of pulsed electron beam with 

the power flow of 10
6
 – 10

9 
W/cm

2
 on neutral gas medium. Consequently of the influence fast 

processes appear besides slow. So in molecular nitrogen under the influence of short pulsed (10 – 100 

nsec) electron beam channels of chemical reactions are initiated. In this case a dominating channel is a 

relaxation of vibrational mode. It should be noted that the presence of impurity can accelerate 

significantly this  relaxation. Thereby the system (molecular nitrogen) in a state of excitation 

(quasistationary state) relatively fast relaxes to the more stable (quasistationary or stationary) state 

with lower energy.  

 In terms of physical kinetics quasistationary states of system are separated by potential barrier 

rB . For the first time a problem of potential barrier overcoming was decided in 1940 by H.A. Kramers 

in his original work [7], however general-theoretical studies on the subject attract wide interest to this 

day [8-11]. The main result of [7] is the formula (Kramers formula) for the potential barrier 

overcoming rate (reaction rate rR ). However boundary applicability's of the formula do not permit to 

describe a wide range of tasks in plasma chemistry. One of the limitation is impossibility of 

calculation of fast process reaction rate on the assumption that the barrier height 
rB  comparable with 

system energy proportional to the temperature T . This condition is observed when the rate of energy 

input exceeds appreciably a cooling rate. 

 If a study of the fast process is involved then Kramers approach should be generalized for 

rB T . In present paper the universal relation for reaction rate is obtained. The relation allows to 

describe the overcoming process both rB T  and rB T . Universality of the obtained relation is 

demonstrated by means of comparison with results of dynamical modeling. 
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2. Generalization of Kramers approach 

In the Born-Oppenheimer approximation a potential energy (potential) of chemical reaction could be 

considered as a function depending on generalized coordinate q . Typical shape of the potential is 

shown in Figure 1. It is assumed that at the initial time the system is located in a quasi-stationary state 

qsq , which corresponds to a local minimum on the potential curve qsU . Overcoming of the potential 

barrier 
rB  located at the saddle point 

sdq  and the transition to a position with lower potential energy 

than  
qsU  corresponds to the end (often intermediate) of chemical reaction. Corresponding coordinate 

on the potential curve is indicated as 
dq . Dynamic of nonequilibrium system that overcomes the 

potential barrier is described by the master equation, which is a balance equation for the probability of 

each state of the system 

 

 
       

,
| ' ', ' | , '

t
t t d

t

 
        


      ,   (1) 

 

where   is the probability density, t  stand for time,  | '   and  ' |   are the transition 

probabilities of system from ' -state to  -state and from  -state to ' -state respectively. But 

frequently it does happen to move to Fokker-Plank equation by the agency of the Kramers-Moyal 

forward expansion  
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where p  is the conjugate momentum, pD T  is the diffusion coefficient in the momentum space, 

the friction parameter   is related to the damping coefficient   and to the inertia parameter m  as 

m  . We are interested in the task of establishing a quasistationary current through the barrier rB . 

In terms of quasistationary state it can be assumed that the probability density   ceases to be a time 

function. Consequently the expression (2) for above conditions takes the form 
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where sdq q q  , qs  and sd  are the absolute values of the angular frequencies of the collective 

motion around the maximum (the saddle point) and the minimum (the quasistationary point) of the 

potential energy. In this case it can be supposed that quasi-equilibrium distribution is performed 

     , , ,p q p q p q   , here  ,p q  is the Maxwell-Boltzmann distribution and  ,p q  

characterizes a deviation from the equilibrium distribution. Solving equation (3) as (4) in the 

neighbourhood of the saddle point we obtain 
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and near quasistationary state we have 
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m
j q q

T
  . Expressions (5) and (6) are required to 

find the reaction rate. The rate according to the transition state method [12] has the form 
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Substituting in (6) the expression for the probability density (4) and (5) we have 
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Expression (7) is a modified formula with respect to the classical Kramers formula 
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Modification of the expression (7) in relation to (8) is the ability to obtain the adequate numerical 

values of the reaction rate in situations: i) the barrier height of the potential is comparable and 

sometimes less than the temperature (energy) of the system; the adequacy of the results provides the 

integral in (8) which defines the diffuseness of the initial state of the system; ii) saddle point sdq  is 

close enough to quasistationary state qsq . Such nearness and the small width of the potential barrier 

are observed in the analyze of reactions with a quantum effects. The error function 

   1/ 2 2

0

2 exp

x

erf x t dt    takes into account the distance between these points. In detail the limits 

of applicability (8) and their influence on the numerical value of the rate have been analyzed in e.g. 

[13-15]. 

 

3. Dynamical modelling 

Comparison of the rates calculated according to expressions (7) and (8) should be carried out with the 

results obtained in the framework of numerical simulation. In the role of the dynamical equations we 

chose the Langevin stochastic differential equations 

 

1

2/

0 0

p tD dwp dU dq dt
d

q m pdt




       
         

        

,   (9) 

 

where tw  is the Wiener process whose increment tdw  possesses the normal distribution with the 

variance dt . This process obeys the conditions 
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where 
nm  is the Kronecker delta,  t  is the delta-function. Within the framework of the Langevin 

formalism, the time-dependent decay rate  DR t  can be calculated by counting the number of 

trajectories  DN t  that reach the point 
dq  before the time moment t  
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where 
totN  is the total trajectories number modeled. Typical time evolution  DR t  can be found in 

[13-16]. A distinctive feature of this evolution is the presence of longtime quasistationary limit. The 

value of this limit we will compare with the results calculated according to expressions (7) and (8). 

The comparisons will be made using the fractional difference   1or 1 100%r K dqsR R R    . 

Simulation parameters are taken from [15]. 

Figure 2 illustrates two fractional differences. The lower curve corresponds to the results of [15]. It 

can be seen that a good agreement (within 2%) is observed in the case where the barrier height is at 

least 1.5 times higher than the temperature of the system. In the area 1 1,5rT B   there is a significant 

disagreement of rates calculated in the framework of the classical expression (8) with the result of 

dynamical simulations dqsR . The upper curve represents the relative difference between dqsR  and rR . 

Analyzing this curve it may be concluded that two 2% agreement between these rates is observed not 

only in the field 1 1,5rT B   but also in the area which corresponds to the small barriers as compared 

with the reaction system temperature. 

   

Figure 1. Deformation dependence of potential 

energy 

Figure 2. Fractional differences between 

dynamical and analytical rates versus 1

rT B . 

Statistical errors do not exceed symbol size. 
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4. Conclusion 

By solving the Fokker-Planck equation the relation of the chemical reaction rate is obtained. 

Universality of the resulting expression with respect to the classical Kramers formula is the ability to 

obtain adequate numerical values under the condition that the potential barrier height is comparable to 

the energy of the system. This situation is typical for the fast processes when the rate of energy input is 

much higher than the rate of cooling. Accuracy of the relation is analyzed by comparing with the  

results of dynamical modeling. It is shown that for the area 
rB T  the results obtained using the 

expressions (7) and (8) within statistical error do not differ. However for 
rB T  accuracy of our 

approach is 2 %, whereas classical Kramers approach gives an error up to 20%. 
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