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Abstract. CRS computer program is presented, which calculates the dynamical deformation of 

metals under irradiation by high-current electron and powerful ion beams. The incorporated 

mathematical models allow one to calculate stresses, deformations and structural changes 

induced by the irradiation. The CRS code numerically solves the equations system, which 

consists of continua mechanics equations, supplemented by equations of dynamics and kinetics 

of structural defects: dislocations, grain boundaries, twins, micro-cracks and vapour bubbles. 

The dislocation plasticity model, the grain boundary sliding model, the mechanical twinning 

model, the spall fracture model and the non-equilibrium evaporation model are incorporated in 

the code. The energy release function for electron beam can be calculated within the code, 

while it can be exported from over programs for ion beam. The CRS code can be a useful tool 

in theoretical estimation and interpretation of experiments in the field of materials modification 

by intensive energy fluxes. Restricted rate of plastic deformation provides high values of shear 

stresses and action of several competitive plasticity mechanisms. Non-equilibrium evaporation 

of metal in the energy release zone leads to a metastable state of overheated melt, which results 

in formation of tensile wave following the stress wave in the solid part of the irradiated metal. 

1. Introduction 

Numerical simulation is an important instrument to reveal conditions and physical processes in the 

irradiated material, to analyse the obtained experimental data and even to predict possible results of 

the electron-beam and ion-beam treatment. The BETAIN computer code [1] was developed by 

A. P. Yalovets especially for the problem of intensive irradiation of metal targets by the beams of 

accelerated charged particles. It combines numerical solution of the continuum mechanics equations 

and the transport of fast particles. This code was used for evaluation of stress fields inside the 

irradiated material [2] and thermodynamic conditions on its surface [3]. In spite of universality and 

embedded solution of transport problem, the simplest model of perfectly plastic body is used for shear 

stresses in the BETAIN code, as well as equilibrium approximation for the liquid-vapour transition. 

The presented here CRS computer program incorporates more complex plasticity model, which 

allows one to calculate stresses and deformations in the material of irradiated target together with the 
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structural changes induced by the stresses. The dislocation plasticity model [4], the grain boundary 

sliding model [5] and the mechanical twinning model [6] are used for determination of shear stresses 

and density of lattice defects. Various combinations of these three plasticity mechanisms can reveal 

themselves depending on the material and the irradiation conditions. Thus, the possibility of 

accounting of all these mechanisms widens the domain of applicability of CRS. The spall fracture 

model [7] and the nonequilibrium evaporation model [8] describe the metal fracture near the irradiated 

[8] and back [9] surfaces. Accounting the non-equilibrium evaporation and the possible metastable 

state of expanded (overheated) liquid in the energy release zone makes the calculations of stresses 

more precise in comparison with the approximation of equilibrium liquid-vapour transition [1]. In 

addition, the non-equilibrium evaporation model allows one to estimate the size of melt drops in the 

ablated material. The fracture model [7] is necessary for prediction of the spall fracture in the solid 

material near the back free surface of target. 

All mentioned features make the considered program more adequate for simulation of the material 

behaviour under intensive irradiation in spite of the corresponding complication of underlying models 

in comparison with [1]. The incorporated models had been previously verified by comparison with 

experimental results on high-speed impact, for example; and now they are applied to the problems of 

high-current electron and intensive ion irradiation of metal targets. The CRS makes calculations in 1D 

approximation, which is sufficient for the most of the problems concerning the metal irradiation. 

2. Mathematical model 

In general case there are three phases in the irradiated metal: solid, liquid and vapour. Solid and liquid 

are treated as a single condensed phase for simplicity; meanwhile, shear stresses are accounted for 

solid and not accounted for liquid. Liquid and solid states can be distinguished most accurately by a 

wide-range equation of state with explicit tracking of phase boundaries [10]; in the case of simpler 

equation of state [11] the controlling of temperature can be used. Accounting of separate vapour phase 

(voids) allows one to describe the dynamic fracture and non-equilibrium evaporation. 

2.1. Substance dynamics 

The irradiated metal is treated as a two-phase mixture of the carrying agent and the disperse phase. 

Condensed phase initially is the carrying agent, while pores and cracks form the disperse phase in 

those parts of metals where they appear. If the voids grow a lot and coalescence, the complete fracture 

occurs, the carrying agent and the disperse phase change over. The multiphase flow approach [12,13] 

is used, which is applicable if the characteristic size of phase heterogeneities is much smaller than the 

scale of flow. The one-velocity approximation is also used: both phases move with the same velocity, 

which is determined by stresses in the carrying agent [12]: 

 c ,zzP Sd

dt z z




 
  

 
 (1) 

where   is the substance velocity; z  is the coordinate; cP  is the pressure in the carrying agent; zzS  

and similar are the stress deviators, which are accounted only in the solid carrying agent;   is the 

average density of mixture. Subscript “c” identifies the carrying agent, while “d” identifies the 

disperse phase. Volume fractions of the carrying agent c  and the disperse phase d : 
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where W  is the growth rate of the dispersed phase volume per unit volume of mixture. True densities 

of phases: 
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where J  is the growth rate of the dispersed phase mass per unit volume of mixture. The average 

density in equation (1) is calculated as 
c c d d        . Equations for internal energies: 

  c c
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dU
P W Q D J U U

dt
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where Q  is the power of heat exchange between phases per unit volume of mixture; T  is the 

temperature; subscript “tr” identifies the phase which mass is increasing; plQ  is additional heating rate 

due to the plastic deformation. The energy release function D  for fast electrons is calculated by CRS 

with use of the method [14] for electron transport; for ions this function is exported from BETAIN [1]. 

Equations (2)–(4) follows from the conservation of volume, mass and energy in a mixture element; 

functions W , J  and Q  express the exchange rates between phases, including phase transition. 

2.2. Dynamic fracture in liquid and solid states 

Liquid is unstable against the phase transition into vapour at pressure lower than the saturation vapour 

pressure, particularly, at any negative pressure. It is typical for expanding heated layer of metal near 

the irradiated surface. In these conditions the cavitation occurs consisting in nucleation and growth of 

vapour cavities, it finally results in ablation of metal from the irradiated surface Nucleation of cavities 

demands the work against the surface tension; therefore, the melt can exist in a metastable state of 

expanded liquid (at negative pressure) during some time [15]. Nucleation of cavities due to the thermal 

fluctuations is dominant at high strain rates especially for the intensive irradiation. Spherical shape of 

cavities is preferable due to the surface tension; their growth is described by the Rayleigh-Plesset 

equation [16]. Equations for nucleation and growth of cavities [8] and the mass exchange due to the 

phase transition allow us to determine the exchange rates W , J  and Q  in this case. 

A similar situation takes place in the expanded solid at the shock wave reflection from the back 

target surface. From the one hand, fracture in solid state is more complex because of complicated 

shape of voids (from spherical one to narrow cracks) and influence of shear stresses. From another 

hand, the mass and heat exchange rates, J  and Q , can be supposed to be zero with high accuracy 

because the cavities are almost empty. The fracture model [7] is used in CRS, which considers 

nucleation (due to thermal fluctuations) and growth of cracks, it allows us to determine W ; the model 

had been tested for wide range of strain rates–from 4 110 s  to 9 110 s . 

2.3. Plasticity 

Total plastic strain of polycrystalline metal can be represented as a result of the combined action of 

three competing processes: i) the dislocation motion, ii) the mechanical twinning and iii) the sliding 

along the grain boundaries. According to this viewpoint, the plastic deformation tensor ikw  is 

represented by the following sum of three tensors: D tw gb

ik ik ik ikw w w w   , where D

ikw  is the part of 

plastic deformation caused by the dislocation motion, tw

ikw  is caused by the mechanical twinning and 
gb

ikw  is caused by the grain boundary sliding. Then the Hooke law [17] with accounting of the plastic 

strain ikw  is used for determination of the stress deviators: 

  2 2/3ik zz iz kz ikS G u w      , (5) 

where G  is the shear modulus; iz  is the bivalent mixed tensor; indexes i and k range over x, y and z. 

The geometrical deformation zzu  is induced by the macroscopic motion of substance: 
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It should be noted that all components of the plastic strain and stress deviator tensors can be nonzero 

even in the case of considered 1D motion of substance [4]. 

2.3.1. Dislocation plasticity. Dislocations are characterized by scalar densities of mobile D

  and 

immobilized dislocations I

  and velocity of mobile dislocations DV   relative to substance; these 

quantities are determined for all possible slip systems. The slip system of dislocations is determined by 

the Burgers vector ib  and by the normal in  and numerated by superscript  . The plastic strain D

ikw  

produced by the dislocation plasticity can be found from the generalized Orowan equation [18]: 

  
D

D D

1

2

ik
i k k i

dw
b n b n V

dt

     


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The equation of dislocations motion is following: 

 3 3D
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where  
2

t1/ 1 DV c

    is the quasi-relativistic factor, which accounts that tDV c  ; t /c G   

is the transverse sound speed in the material; 0m  is the rest mass of dislocations; Y  is the static yield 

strength; B  is the phonon drag coefficient. Dislocations move only if the force of the shear stresses is 

higher than the resistance force / 2bY ; the sign “ ” means that the resistance is always directed 

opposite to the dislocation motion. Kinetics equations for dislocation densities are described in [7] and 

reflect the balance between the generation of new dislocations, immobilization and annihilation of the 

existing one. Generation rate is determined through the energy dissipation rate at the plastic 

deformation–approximately 0.1 part of the dissipated energy is spent on formation of new defects [19]. 

2.3.2. Twinning. Twinning becomes an alternative plasticity mechanism at low temperatures and high 

strain rates [20,21]. Twins are supposed to be cylindrical and characterized by concentrations of 

mobile TWN 
 and immobilized 

IMN 
 twins (with fixed boundaries), their radii, TWR

 and IMR
, and 

thicknesses, TWh
 and IMh

; possible crystallographic orientations of twins are numerated by  . The 

plastic strain caused by twinning is expressed through its volume fraction  : 

  
TW

TW
ik

i k k i

dw d
n n

dt dt


   




    , (9) 

where TW  is the deformation of twinned material, which is TW 1/ 2   in fcc metals [20]; unit 

vectors i

  and in  describe the crystallographic orientation of twins. The volume fraction is calculated 

from the concentration and size of twins, which are determined in accordance with [6]. 

2.3.3. Grain boundary sliding. Submodel of the grain boundary sliding [5] includes the equation for 

the plastic strain gb

ikw  based on the Maxwell model of highly viscous liquid [17]: 

 

gb

zz bzz
S ydw

dt G



, (10) 
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where   is the relaxation time, which is proportional to the grain diameter [5]. A simple expression 

was obtained in [5] for the barrier resistance stress 
by –it is proportional to G . 

3. Numerical implementation 

The described above mathematical model is numerically realized in the CRS computer program 

written on FORTRAN. This program is designed to simulate the intensive actions on metals: the high-

speed impact, intensive electron and ion irradiation. It is supplied by handy data output including the 

dynamic visualization. Various equations of state can be attached, including the interpolation one [11] 

and the tabulated one [10]. The bank of plasticity model constants includes aluminium, copper, nickel, 

iron and stainless steel at this point in time. 

Method of separation by physical processes is used at the numerical solution. The substance 

dynamics is calculated by modification of the numerical method [22]; modification consists in 

eliminating of the artificial viscosity and accounting of the physical viscosity instead and allows one to 

obtain the stable solution by using of a fine enough computational grid [23]. Equation (8) for the 

dislocation velocity is solved with use of the approximate analytical solution. Other equations are 

solved by Euler method with varied time step. All the described in previous section physical processes 

can be accounted simultaneously in CRS, or part of them can be excluded for simplicity of analysis. 

 

4. Calculation results 

Figure 1 shows the calculation results for irradiation of copper target by high-current electron 

beam. Figure 1(a) demonstrates the evolution of compression wave generated by irradiation (by the 

fast energy release): “A” is the high-pressure area in the energy release zone; “B” is the propagating 

compression wave evolving to the steady shock wave; “E” is the elastic precursor; “D” is the tensile 

wave, which amplitude is restricted by cavitation (non-equilibrium evaporation); “C” marks the 

melting boundary between the energy release zone and the main part of the target. Accounting of the 

non-equilibrium evaporation and the metastable state of expanded liquid in the energy release zone 

makes possible existence of negative pressures in the tensile wave, while in the frames of equilibrium 

approximation for the liquid-vapour transition [1] the pressure is limited below by the zero value. 

 

Figure 1. Irradiation of copper target by high-current electron beam: (a) stresses in 

target at irradiation with beam parameters corresponding to the SINUS-7 accelerator 

[2,9]; (b) diameters of liquid drops forming at ablation versus the initial energy of 

electrons (different curves correspond to different types of averaging). 
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Figure 1(b) presents the size of liquid drops forming at ablation of the surface layer versus the initial 

energy 
bT  of fast electrons; the average drops size grows from about 100 nm up to several 

micrometers with the increase of the fast electrons range in substance together with 
bT . 

Figure 2 shows the non-equilibrium nature of plastic deformations at the strain rates typical for the 

intensive irradiation problems. The amplitude of elastic precursor of the shock wave in iron is plotted 

versus the target thickness: experimental data [24-26] in comparison with our simulations. One can see 

that the elastic precursor can be very high–up to the amplitude of compression pulse itself (about 

10 GPa in the considered case)–in thin targets, therefore, the elastoplastic properties is of high 

importance in this case. The dislocation plasticity model incorporated in the CRS can describe the 

experimentally observed evolution of the elastic precursor. Reduction of the target thickness and the 

thickness of the energy release zone increases the strain rates realized in the target material. High 

values of shear stresses near the loaded or irradiated surface are explained by restricted density of 

defects (dislocations)–the concentration of defects is not enough to provide an effective plastic 

relaxation of shear stresses at high strain rates. It can provoke activation of competitive plasticity 

mechanisms, such as twinning or the grain boundary sliding. 

Figure 3 demonstrates the calculation results for volume fraction of twins and scalar density of 

dislocations in copper after the high-current electron irradiation (electrons energy is 1.5 MeV, current 

density is 100 kA/cm
2
, and the pulse duration is 50 ns). The stress wave generated by irradiation 

initiates the structural changes in the target material–increasing of dislocations density and formation 

of twins. The twinning becomes an important only at very high intensities of irradiation for materials 

with low staking fault energy. Comprehensive numerical investigation of the dislocation density 

change in metals in the result of intensive electron and ion irradiation are presented in [4,27], while 

investigation of twining is a new result. 

 

 

 

 

Figure 2. Attenuation of elastic precursor in 

iron: experimental data [24-26] versus our 

simulations with us of CRS program. 

 Figure 3. Spatial distributions of the volume 

fraction of twins   and scalar density of 

dislocations D  in copper target after irradiation. 

5. Conclusions 

The mathematical model underlying the CRS computer code is briefly described. It allows one to 

account non-equilibrium nature of the plastic deformation, evaporation in the energy release zone and 

spall fracture near the back surface. In addition it determines characteristics of the material 

microstructure during and after the beam action, including the size of ablated drops, density of 

dislocations etc. It makes the CRS code a useful tool for analyzes of the metal irradiation by intensive 

electron and ion beams. Some calculation results are presented and discussed. For example, restricted 
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rate of plastic deformation provides high values of shear stresses near the irradiated surface and action 

of several competitive plasticity mechanisms in general case. 
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