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Abstract. We have performed muon spin rotation/relaxation and 119Sn nuclear magnetic
resonance (NMR) measurements to study the vortex state of polycrystalline samples of YPd2Sn
(Tc = 5.4 K), over a wide range of applied magnetic fields up to Bc2(T ). Measurements in the
vortex state provide the temperature dependence of the effective magnetic penetration depth
λ(T ) and the field dependence of the superconducting gap ∆(0). The results are consistent with
a very dirty s-wave BCS superconductor with λ(0) = 212(1) nm, a gap ∆(0) = 0.85(3) meV,
and a Ginzburg-Landau coherence length ξGL(0) ∼= 23 nm. The µSR data in a broad range of
applied fields are well reproduced by taking into account a field-related reduction of the effective
superconducting gap. Interestingly, the ratio 2∆(0)/(kBTc) appears to a good approximation
to be field-independent, with a value at low field of 3.85(9), implying a field dependence of the

gap ∆(T = 0, B) = ∆(T = 0, B = 0)
√

1 − B
Bc2(0)

. We discuss the significance of this result.

The compound YPd2Sn is a so-called full Heusler compound with general formula AT2M
(M main group element, T transition element, and A either a rare earth or another transition
element). Out of many hundreds of Heusler compounds only less than 30 (with Pd, Ni, or Au
at the T site) are superconducting at ambient pressure. YPd2Sn is the one with the highest
superconducting transition temperature, Tc = 5.4 K.

Besides superconductivity Heusler materials [1] display a large variety of interesting electronic
properties such as different types of magnetic order (ferro-, antiferro-, and ferrimagnetism),
heavy fermion behavior or half metallic ferromagnetism [2]. Some materials of this class may
also exhibit properties typical of a topological insulator [3]. Their electronic tunability and
multifunctionality make them attractive candidates for spintronics applications.

Recent transport and thermodynamic studies have identified strong electron-phonon coupling
as the most important factor leading to superconductivity in these families. However, in contrast
to the simple BCS theory, no conventional dependence of Tc as a function of the BCS parameters,
such as N(0) or the Debye temperature, was found [4].

Unlike conventional BCS superconductors, several Pd-based compounds, such as YbPd2Sn
[5] and ErPd2Sn [6], display co-existing superconductivity and long-range antiferromagnetic
order. A clear and complete understanding of the origin of superconductivity, magnetism, and
especially of their coexistence or interplay in the full Heusler compounds, is still missing.
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In YPd2Sn, earlier µSR data also showed an anomaly of possible magnetic origin setting in at
Tc. For a non-magnetic superconductor such as YPd2Sn, the large variation of Tc’s reported in
the literature is also striking. We have therefore characterized the magnetic and superconducting
properties of YPd2Sn at microscopic level also to clarify the role of Pd, which due to its large
Stoner factor is near to ferromagnetism. The detailed results of these investigations are reported
in [7].

Here we focus on investigations of the vortex state and we discuss the possible field dependence
of the energy gap in a conventional BCS superconductor. The low Bc2(0) = 0.57 T of this
material allowed to study the B − T phase diagram in the vortex state over a large range of
fields up to the phase boundary and to investigate how the BCS gap is affected by a large
magnetic field. We analyzed the µSR data by using a sum of Gaussian functions. This has the
advantage to be model independent and provides also the best fit to the data over the entire
range of applied fields [8]. After subtraction of the background contribution, the time spectra
were fitted with the following expression

A(t) = e−σ
2
nt

2/2
N∑
i=1

Aie
−σ2

i t
2/2 cos (γµBit+ ϕ). (1)

Here ϕ is the initial muon spin phase, while Ai, σi, and Bi are the amplitude, relaxation rate
and first moment of the internal field of the i-th Gaussian component, respectively. σn is the
small contribution to the field distribution arising from the nuclear moments, independent of
temperature and determined well above Tc.

The standard deviation of the multi-Gaussian internal field distribution is then given by:

〈∆B2〉 =
σ2
s

γ2
µ

=
N∑
i=1

Ai
A1 + . . .+AN

[
(
σi
γµ

)2 + (Bi − 〈B〉)2

]
, (2)

with

〈B〉 =
N∑
i=1

AiBi
A1 +A2 + . . .+AN

. (3)

In the fit the number of components N was increased until the χ2 of the fit did not change
significantly. Typically, N is between 1 (high-field data) and 3 (low-field data).

The ability of µSR to measure the field distribution and its moments in the vortex state
is a powerful tool to determine characteristic length scales of superconductors such as the
magnetic penetration depth and the coherence length, and electronic properties such as the
superconducting gap and its symmetry. The ideally periodic flux line lattice (FLL) of known
symmetry has been computed from various theories, see [9, 10, 11, 12] and references therein. The
field distribution of the vortex lattice contains detailed information about the superconducting
state. Recently, for instance, the diffraction of Cooper pairs on the vortex lattice of a very clean
superconductor predicted by the Delrieu treatment of Gorkov theory has been detected in Nb
crystals by a careful analysis of the TF spectra [12, 13].

The London and Ginzburg-Landau theories have the practical advantage to provide relatively

simple expressions for quantities such as the field variance 〈∆B2〉 = σ2
s
γ2µ

and are therefore widely

used to analyse the µSR data. However, the original London model neglects the vortex core,
corresponding to the case of an extreme type-II superconductor κ = λ

ξ � 1 and small applied

fields B or, equivalently, small b ≡ 〈B〉/Bc2, 〈B〉 average local field, which is generally close to the
applied field; in our experiment equal to it within 1%. On the other hand the Ginzburg-Landau
theory, which takes into account the vortex core, is actually valid only close to Tc.
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Figure 1. Temperature dependence of the muon spin depolarization rate in the vortex state of
YPd2Sn, measured after cooling below Tc in different applied fields. Also plotted are the NMR
linewidths measured at 0.463 T and converted into equivalent µSR relaxation rates. The fit
lines were obtained using the procedure explained in the text.

In the range 0.13/κ2 � b � 1 the London model gives the well known field-independent

〈∆B2〉 = 0.00371
Φ2

0
λ4

[14], or equivalently σsc,L(T )[µs−1] = 1.0728×105

λ2(T )[nm2]
, where the subscript L

indicates the London limit.
If the applied field is not small with respect to Bc2, the standard deviation becomes field

dependent, because of the effect of the finite size of the vortex cores and of the reduced intervortex
distance. The effect of the finite size of the vortex cores and the expected field dependence of
the field variance have been taken into account in the London model by introducing a Gaussian
cutoff in the Fourier coefficients of the local field [9, 11]. Ginzburg-Landau theory provides a
natural description of the vortex cores of the FLL [10].

One finds that the standard deviation in an applied field is a function of b and can be written
as

σs(T, b) = σs,Lf(b). (4)

Analytical expressions for f(b) have been computed from the London model with cutoff (LC)
[9] and from a numerical solution of the Ginzburg-Landau equation (GL) [10]. Ref. [11] also
presented an approximate analytical solution and numerical calculations of this function. In the
first two cases f(b) simplifies to:

fLC(b) = 0.45175(1− b)
√

1 + 3.9(1− b2) (5)

fGL(b) = 0.45249(1− b)
[
1 + 1.21(1−

√
b)3
]

(6)

where the coefficient have been chosen so that for b = 0, which formally corresponds to the
London limit, we obtain σs,L. Both expressions have been computed for a wide range of fields
in the mixed state, the first for 0 < b < 1 and the second for 0.25/κ1.3 / b 6 1 for κ > 5.

Eq. 4 has been used to analyze data in several cases over the full temperature range, where a
decrease in the width of the internal field distribution when increasing the field toward Bc2 has
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Figure 2. Field dependence of the gap-to-Tc ratio 2∆(0, B)/(kBTc(B)).

been observed (see for instance [15]). Generally, for each temperature the σs values obtained
at various b are fitted with Eq. 5 or 6 by leaving the parameters λ and Bc2 free and finally
obtaining from the global temperature data Bc2(T ) and λ(T ). This procedure assumes no field
dependence of λ. This is true and justified at T = 0 for a conventional superconductor with
a single isotropic gap, to which the calculations of Ref. [9, 10] are related, but not at T > 0;
i.e., the temperature dependence of λ cannot be considered as field independent. This follows
from the fact that the magnetic penetration depth diverges at the critical temperature, which
in turn depends on the applied field Tc(B). Since the phase transition from the normal state
to the vortex state is a second-order transition, this implicitly introduces for all T > 0 a field
dependence of λ.

The temperature dependence of the magnetic penetration depth is a measure of the superfluid
density ns ∝ 1/λ2. Within the BCS approach it is determined by the temperature dependence
of the BCS gap. To take the above described field effects on the magnetic penetration depth
into account we introduce a field-dependent effective superconducting gap ∆(0, B). Physically,
this can be understood by considering that fields of not negligible magnitude with respect to
Bc2 act as pair breakers, smear out the sharp edges of the spectroscopic gap, and lead to an
effective reduction of ∆(0).

Following Ref. [16] we parametrize the BCS gap as

∆(T,B) = ∆(0, B) tanh

[
πkBTc(B)

∆(0, B)

√
Tc(B)

T
− 1

]
. (7)

Our set of data of σs(T, b) can be well fitted using the expression for a dirty superconductor
with a single s-wave gap [17] (see Fig. 1)

ns(T )

ns(0)
=
λ2(0)

λ2(T )
=

∆(T,B)

∆(0, B)
tanh

∆(T,B)

2kBT
. (8)

The dirty character is confirmed by our independent determination of the normal and the
superconducting state parameters via transport and magnetization measurements [7], where
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we find that, while remaining a good metal with kF` ' 60, YPd2Sn has a very low value of
`/ξ0 = 0.008 (ξ0, BCS coherence length). Fig. 1 also shows the NMR line width measured
at 0.463 T scaled to the muon data by taking into account the different gyromagnetic ratios
(γ119Sn/γµ = 0.1178). It is interesting to note that the magnitude of the field broadening obtained
by the two techniques agrees fairly well. However, the NMR data seem to be affected by
additional broadening effects at low temperatures, probably due to the proximity to the phase
boundary. This reflects the limitations of NMR with respect to µSR when studying the vortex
state of superconductors with low Bc2 values.

From the fit we obtain Tc(B) and ∆(0, B). The field dependence of the critical temperature
obtained in such a way is in good agreement with the Bc2(T ) curve obtained from magneto-
resistivity and ac magnetization measurements and is well reproduced by the prediction of the
Werthamer-Helfand-Hohenberg (WHH) expression [7]. This agreement supports our analysis.
Fig. 2 shows the field dependence of the ratio 2∆(0)/(kBTc). Interestingly, it appears to a
good approximation to be field-independent, with an average value of 3.85(9). From the usual

approximation Bc2(T ) = Bc2(0)[1 − ( TTc )2], one obtains Tc(B) = Tc(0)
√

(1− B
Bc2(0) . Therefore,

a constant gap-to-Tc ratio implies a field dependence of the gap ∆(0, B) = ∆(0, 0)
√

1− B
Bc2(0) .

Assuming a field independent gap-to-Tc ratio, the field and temperature dependence of the gap
can be described by the compact formula

∆(T,B) = ∆(0, 0)

√
1− B

Bc2(0)
tanh

[
R

√
Tc(B)

T
− 1

]
. (9)

In our specific case R = 1.6152, and for an ideal (weak limit) BCS superconductor, R =
2π/3.5278 = 1.781. In the microscopic BCS theory for superconductivity the external magnetic
field is treated as a weak perturbation. Therefore, e.g., the solution of the Meissner effect is a
low-field limit solution and the gap has no field dependence. In Ginzburg-Landau theory the
spatially averaged Ginzburg-Landau order parameter has a field dependence 〈|ΨGL(~r,B)|2〉 =
Ψ2

01[− B
Bc2(0) ]. Since the Gorkov gap (or pair) potential ∆G(~r) ∝ ΨGL(~r), it is interesting to

note that, although the BCS (energy) gap is not necessarily the same as the Gorkov gap
potential (see ,e.g., gapless superconductivity), a field reduction of the BCS gap following√

1− B
Bc2(0) is obtained if we identify the BCS gap with the spatially averaged Gorkov gap

potential ∆(T = 0, B)2 = 〈|∆G(~r)|2〉 ∝ 〈|ΨGL(~r,B)|2〉 = Ψ2
0[1− B

Bc2(0) ].

In conclusion, we find that the µSR data of YPd2Sn are consistently reproduced in a
broad range of applied fields with a field-dependent isotropic superconducting gap, which
decreases with field with a similar functional dependence as the critical temperature. The
ratio 2∆(0)/(kBTc) = 3.85(9) is consistent with the presence of an important electron-phonon
coupling in this compound. The effective magnetic penetration depth is λ(0) = 212(1) nm.
Assuming a field independent gap-to-Tc ratio a simple parametrization of the gap can be used
to take into account the reduction of the superfluid density (for T 6= 0) of a conventional s-wave
BCS superconductor in a magnetic field.
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