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Abstract. Calcination of a co-doped (N-C-S) TiO2 photocatalyst has been done following the 
whole process by neutron diffraction (instrument D1B of the ILL) with the objective of study 
the transition between two crystalline phases: anatase and rutile in order to find the optimum 
temperature leading to the coexistence of both for this catalyst whose band gap has been 
shifted to give activity in the visible part of the electromagnetic spectrum. This coexistence is 
important as it has been established that these catalyst are more efficient than those having only 
one individual phase.  At this respect, it is very important to find the optimum temperature at 
with synthesis has to be done. In this research it was established that at the heating ramp of  
17ºC/5 min,  the coexistence of both crystalline phases took place within a narrow margin of 
temperatures between 610ºC and 690ºC. At higher temperatures only rutile can be identified as 
the crystalline phase of the TiO2. 

1.  Introduction 
The discovery of the photosplitting of water in semiconductor-based photoelectrochemical cells by 
Fujishima and Honda in the earlier 1970 [1] was the origin of a flourishing interest in photocatalysis, 
initially focused on energy production from water and light and later also on degradation of 
environmental pollutants in water and air. The crystalline phases of TiO2 most frequently used in 
photocatalytic applications are anatase and rutile, with band gaps of 3.26 and 3.05 eV respectively [2], 
that correspond to absorption of wavelengths in the near-ultraviolet region. This fact cause 
impediment for the photocatalytic degradation of contaminants under conditions with poor 
illumination or lack of UV light, for example indoor environments and road tunnels. To enhance the 
advantage of present and common light sources, the development of visible light active TiO2 can be of 
considerable interest. 
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The red-shift in absorption to visible light of photocatalytic materials can be induced by the 

incorporation of foreign elements in the semiconductor material. Previously employed methods are 
impregnation of the surface [3-4], integration of the foreign atoms in substitutional or interstitial 
positions of the semiconductor crystal structure by either ion implantation [5] or chemical synthesis 
[4]. This produces changes inside the electronic band structure by formation of intermediate states 
inside the forbidden gap or by deformation of the band itself.  Co-doped titanium active photocatalyst 
have received much attention during the last decades for its promising impact on environmental 
protection, and it is known that  the microstructure of the photocatalytic materials has a critical role on 
the photocatalytic activity [6] being the mixture anatase-rutile more active than both phases by itself.  
The synthesis and the preparation of photocatlytic active titanium dioxide have an important influence 
on the microstructure but also the calcination procedure plays a significant role, when increasing the 
temperature the transformation of anatase to rutile is enhanced [7,8].  Therefore it is important to find 
in each case, the calcination temperature that leads to the formation of the two phases in an optimum 
way. 

In this work, an N-C-S- co-doped photocatalyst synthesized by the authors [9] have been monitored 
by neutron diffraction under controlled calcination, following the transition between anatase and rutile 
trying to find the range of coexistence for this catalyst. 

2.  Experimental 
TiO2 based photocatalysts were synthesized following the method described in [10], with some 
modifications. Titanium isopropoxide was used as precursor and thiourea ((NH2)2CS) was used to 
introduce dopants into the crystal network of TiO2, provided that it contains the three species. 
The synthesis was as follows:  pure thiourea (53.6 g) was dissolved during continuous stirring in 700 
ml ethanol, heated to 65ºC. Titanium isopropoxide (50 g) was then added slowly and let to stir during 
1 h. The solution was concentrated under reduced pressure resulting in the formation of white slurry 
that was left to dry in room temperature for 2 days to obtain a white powder.  
 
 

 

 
Figure 1. Experimental set up. 

 
Samples were calcinated at the CRG-two-axis diffractometer D1B place in the Institut Laue-

Langevin in Grenoble (France), being monitored on site by taking continuous diffraction patterns of 
the process.  A schematic representation of the experimental device can be seen in Fig. 1. 

A coiled electrical resistance, connected to a temperature programmer and to a data logger was 
used to heat the sample.  It was opened resulting in a gap in its structure in order to avoid overlapping 
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of their peaks in the spectrum acquisition.  During the experiment they were kept inside of a vanadium 
sample holder with a high of 10 cm, an external diameter of 8.5 cm and an internal diameter of 4.8 cm. 
It was also tested a sample holder made of ceramic; however, it was discarded because the neutron 
diffraction spectrum of the catalyst was highly influenced by the composition of the ceramic.  The 
sample was connected to a cartridge of activated charcoal in order to capture the SOx and NOx gasses 
being resulting from the calcinations.  This is the reason why a conventional furnace was not used, to 
be able to safely recover the gasses.  Heating followed a temperature ramp: 17ºC/5 min, until 820°C.  

D1B diffractometer was chosen because of its high efficiency position sensitive detector (PSD) 
which makes it suitable for real time experiments and for very small samples. The vertical distribution 
of neutron beam during the experiment was wide enough to cover the whole sample. The wavelength 
of the experiment was 2,52Å. 

3.  Results and discussion 
Several peaks were identified during the different steps of the experiment; some of them were due to 
the presence of the vanadium sample holder, others correspond to the different crystalline phases of 
the titanium dioxide. In Figure 2 an example of diffraction patterns at different temperatures in  the 
region between values of 2 theta of 60 and 74 (in order to avoid overlapping) are presented. As can be 
seen in Fig. 2 at the beginning of the experiment (T=25°C) there are no peaks in the region of interest. 
During the experiment the shape of the diffraction patterns varies and a small peak can be seen 
growing when the temperature reaches 450°C at 2 theta value between 66 and 67. This peak can be an 
indicative of the formation of anatase. 

The transition between both crystalline phases con be established when the temperature reaches 
653°C. In the pattern epicted in Fig. 2 it can be seen a remaining peak corresponding to anatase and 
two new peaks corresponding to the formation of rutile (2 theta = 67.2 and 71). At the end of the 
experiment (T = 820°C) there is no anatase in the sample and another peak corresponding to rutile 
appears (2 theta = 69.3). It is also represented the evolution of the diffraction pattern when cooling 
noting that the most intense rutile peaks remain without presence of anatase.  

According to the results obtained it can be said that there is a coexistence of both crystalline phases 
in a very small range of temperature, between 610°C and 690°C. This coexistence disappears when 
heating.  

Figure 3 represents the projection in two dimensions of the experiment since the beginning till the 
end of the experiment in function of the temperature in °C where,  marked as a shaded band, it can be 
seen the narrow margin of coexistence of both crystalline phases, between 610°C and 690°C. 
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Figure 2. Diffraction patterns at different temperatures. 
 

 

Figure 3. Contour plot of the experiment. The range of coexistence of anatase and rutile has been 
marked as a shaded band. 
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4.  Conclusions 
In this research the evolution of the phase transition anatase → rutile in a co-doped N-S-C titanium 
active photocatalyst was followed by means of neutron diffraction.  At the heating ramp of  17ºC/5 
min,  the coexistence of both crystalline phases was established within the margin of temperatures 
between 610ºC and 690ºC, disappearing when heating and remaining only the crystalline phase rutile. 
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