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Abstract. We illustrate the use of high-resolution neutron spectroscopy to explore the extreme
spatial confinement of soft matter in nanostructured materials. Two well-defined limits are
considered, involving either intercalation or interfacial adsorption of the ubiquitous polymer
poly(ethylene oxide) in graphite-oxide-based hosts. Vibrational modes associated with the
confined macromolecular phase undergo dramatic changes over a broad range of energy transfers,
from those associated with intermolecular modes in the Terahertz frequency range (1 THz
= 33 cm−1), to those characteristic of strong chemical bonds above 2000 cm−1. We also
consider the effects of polymer chain size and chemical composition of the host material.
Variation of the degree of oxidation and exfoliation of graphite oxide leads to two distinct
cases, namely: (i) subnanometer two-dimensional confinement; and (ii) surface immobilization.
Case (i) is characterised by significant changes to conformational and collective vibrational
modes of the polymer as a consequence of a preferentially planar trans-trans-trans chain
conformation, whereas case (ii) leads to a substantial increase in the population of gauche
conformers. Macroscopically, case (i) translates into the complete suppression of crystallization
and glassy behaviour. In contrast, case (ii) exhibits well-defined glass and melting transitions
associated with the confined phase, yet at significantly lower temperatures than those of the
bulk.

1. Introduction
Optical spectroscopy has been used extensively to characterise polymeric and macromolecular
materials [1]. Traditionally, Fourier-transform Infrared (FTIR) and Raman spectroscopy have
been the most versatile methods to identify specific structural features related to polymer
conformation in the solid and molten phases. The ubiquitous polymer poly(ethylene oxide),
hereafter PEO, is a good case in point, as the solid phase is characterised by a distinct helical
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structure which is only retained partially in the liquid or under conditions of strong spatial
confinement [2, 3, 4].

Notwithstanding the above, optical spectroscopic techniques do fail in some important
cases of increasing scientific and technological interest. Such is the case of macromolecular
intercalation or adsorption in layered and nanostructured host media, particularly when the
latter is characterised by a strong optical response in the spectral range of interest. Graphite-
based substrates fall into this problematic class of materials owing to their strong absorption
in the infrared [5] or electronic (resonant) enhancement effects in the visible region of the
electromagnetic spectrum [6, 7]. Owing to the strong neutron-proton incoherent cross section,
inelastic neutron scattering (INS) can circumvent these difficulties quite elegantly in the
microscopic characterisation of confined hydrogenous matter. We have recently demonstrated
how broadband, high-resolution INS, as that afforded by the TOSCA spectrometer at the
ISIS Facility (United Kingdom) [8], constitutes an exquisite characterisation tool to study soft
hydrogenous matter confined in graphite-oxide (GO) materials [9, 10, 11].

In this contribution to the Proceedings of the VI Meeting of the Spanish Neutron Scattering
Association, we highlight the merits and strengths of INS as a tool to characterise molecular
and macromolecular structure and dynamics under extreme spatial confinement. To this end, we
compare INS data obtained for PEO chains of increasing length, from a single monomeric unit
[i.e., ethylene glycol (EG)] to several thousand repetitive ethylene-oxide units. Furthermore, by
varying the degree of GO oxidation and exfoliation, we also explore distinct regimes of spatial
confinement, from subnanometer two-dimensional confinement to surface immobilization onto
graphene (G) sheets. We close by outlining both the basic instrumental prerequisites that have
enabled these studies as well as some ways forward.

2. Experimental
2.1. Synthesis of graphite-oxide-based materials and intercalation compounds
GOs were produced by oxidation of natural graphite using a modified Brodie method [12].
Varying degrees of GO oxidation were obtained by changing the reaction time and
temperature [9, 13]. Specimen G was obtained by placing GO on a glass boat and inserting
it in a quartz tube under an argon flux. This tube was then inserted into a tube furnace
preheated to 1000 ◦C. After 1 min, the tube was removed and cooled down to room
temperature. Pentaethylene glycol (5PEO) was purchased from Fluka, whereas EG and PEO
[HO(CH2CH2O)nH] with chain lengths n = 13, 104, 795, and 2135 were supplied by Aldrich.
Hereafter, we will use the term “nPEO” to identify a PEO chain of length “n.” Intercalation
of EG and 5PEO was performed by direct mixing with GO in the absence of solvent, whereas
intercalation of 13PEO and 2135PEO was carried out in aqueous solution by stirring a total of
0.5 g PEO previously dissolved in 20 mL water with 0.5 g GO over a period of 15 days. A similar
procedure was followed to absorb 2135PEO onto the G specimen. Any EG and PEO excess was
removed by filtration and thorough aqueous washings. The resulting EG/GO, nPEO/GO (n=5,
13 and 2135) and 2135PEO/G specimens were then dried at 80◦C for 24 h in a vacuum oven (P
< 0.1 mbar). The amount of EG(nPEO) in EG(nPEO)/GO and nPEO/G was calculated from
thermogravimetric sample-residue analysis as described previously in Refs. [10, 14]. Additional
compositional and structural information can be found in Ref. [13].

2.2. Characterisation
INS experiments were performed on the TOSCA spectrometer [8] located at the ISIS Facility,
Rutherford Appleton Laboratory, United Kingdom. Neutron time-of-flight data were collected
in both back- and forward-scattering geometries, and then added together to obtain a hydrogen-
projected vibrational density of states (VDOS). Typical run times varied between 2 and 8 h
depending on the hydrogen content of the sample. All samples were contained in flat aluminium
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cells of thickness 1-4 mm and cooled to temperatures below 30 K. Based on the thermal behaviour
of EG and nPEO observed by differential scanning calorimetry (DSC), EG and nPEO with n ≥
13 cannot be obtained in an amorphous state, whereas the quenching of molten 5PEO in liquid
nitrogen can prevent crystallisation. Amorphous 5PEO was then produced by direct immersion
(quenching) into the TOSCA cryostat (T < 30K). Crash cooling to cryogenic temperatures (T
< 100K) was optimised by placing the samples at the bottom of the cryostat and exposing them
directly to a stream of liquid helium. To prepare a crystalline sample of 5PEO, the specimen
was first crystallised in a freezer held at 240K, followed by immersion in the low-temperature
cryostat. INS data of GO, G, EG, and nPEO were normalized to sample mass and those of
EG(nPEO)/GO and 2135PEO/G were normalized to the amount of EG(nPEO) content.

3. Results and Discussion
3.1. Molecular-size effects
Both EG and nPEO intercalate into the GO interlayer space giving rise to a single molecular
layer of thickness 3.0-3.4 Å. Their concentration in the intercalate amounts to 22±2 wt% of the
total EG(nPEO)/GO mass. Both the interlayer spacing and the amount of EG and nPEO do not
depend strongly on intercalate chain length, a strong indication that the oligomer and polymer
chains are forced to adopt a planar conformation in a monolayer arrangement, i.e., well-defined
and extreme two-dimensional (2D) confinement. Moreover, neither EG nor nPEO can crystallize
in the intercalate and their corresponding glass transitions are not present in the calorimetric
data. Previous dielectric-spectroscopy studies to probe the α-relaxation process (associated with
the glass transition) and other processes related to molecular mobility below the glass transition
have also shown the suppression of α-relaxation phenomena as well as a slowdown of β-relaxation
modes for 2135PEO [11]. These results were rationalized in terms of a complete suppression of
cooperativity among polymer chains and restricted chain motions induced by strong (hydrogen-
bonding) PEO-GO interactions. On the basis of the above experimental results, the cartoon
in Figure 1 provides a schematic representation of the EG/GO and 5PEO/GO materials of
relevance to the present study.

Figure 1. Sketch of (a) EG/GO and (b) 5PEO/GO intercalates. Dashed lines show the
intermolecular hydrogen bonds between the EG(5PEO) intercalate and the GO host.

Figure 2 shows the attenuated-total-reflectance Fourier-transform infrared (ATR-FTIR)
spectrum of GO, as well as those of bulk and confined PEO with the longest chain length
of the series (2135PEO). As observed, FTIR spectral features associated with confined PEO
are severely affected by the presence of a highly absorbing GO matrix, making it practically
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impossible to extract quantitative information on changes to the vibrational spectrum of the
polymer upon intercalation. The most significant changes in these ATR-FTIR data take place
in the OH stretch region at ca. 3250 cm−1, associated with the presence of hydroxyl (OH)
groups in the GO substrate. The red shift observed in going from pristine GO to 2135PEO/GO
indicates the formation of hydrogen bonds between OH groups in GO and PEO ether groups, and
are associated with an overall weakening of O-H bonds [15]. This assignment is also supported
by a red shift of the C-O-C stretching vibration band centred at 1103 cm−1 in bulk PEO. The
FTIR data thus confirms the presence of specific intermolecular interactions between PEO and
GO, yet it provides no direct information about the confined polymer phase.
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Figure 2. Room-temperature ATR-FTIR spectra of GO, bulk 2135PEO, and 2135PEO/GO.
For ease of comparison, the overall intensities of the spectra corresponding to GO and
2135PEO/GO have been multiplied by a factor of 2.5.

To gain further insight into the macromolecular structure of confined EG and nPEO,
INS measurements on EG/GO, nPEO/GO, and their corresponding pristine materials were
performed on the TOSCA spectrometer at 30 K. One of the primary advantages of INS
spectroscopy is that there are no hard selection rules and mode intensities can be directly related
to the underlying VDOS. Therefore, spectral assignments can be performed on the basis of our
current understanding of the vibrational spectrum of the bulk polymer obtained from optical
spectroscopy [16, 17, 18] and computer simulation [19]. Another advantage of INS spectroscopy
lies in its high sensitivity to vibrational modes involving hydrogen, thereby greatly simplifying
spectral assignment when the host matrix is non hydrogenous. A detailed assignment of these
bands has been reported in Refs. [10, 11]. Last but not least, INS spectroscopy allows access to
very low energy transfers below ∼200 cm−1, difficult to access with conventional infrared and
Raman techniques.

INS spectra for bulk and confined GO, EG, and nPEO (n=5,13, and 2135) over the energy-
transfer range 24-4000 cm−1 are shown in Figure 3. The GO spectrum exhibits a very weak
and featureless INS response, which enables a clear identification of EG(nPEO) bands in the
EG(nPEO)/GO samples. At higher energy transfers (shaded region I in Figure 3), the INS
spectra is dominated by a broad band associated with C-H stretch vibrations centred at 2930-
2960 cm−1. The integrated intensity of this high-energy feature corresponding to C-H stretch
modes serves to validate the amount of EG(nPEO) in the sample (ca. 22 wt%), as detailed
previously in reference [11] for the case of the 2135PEO/GO intercalate. Moreover, we find
that this particular spectral feature does not undergo any changes in intensity or line shape
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upon confinement and can, therefore, be used as a reliable estimator of the total concentration
of hydrogen in a given sample. On the basis of these observations, intensity changes at lower
energy transfers can then be linked to changes in the vibrational dynamics of the intercalate
upon confinement.
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Figure 3. Mass-normalised INS spectra of GO, EG, and PEO (n = 5-2135) in the bulk and
under confinement in GO (EG/GO and nPEO/GO). For an explanation of each shaded region
in the spectra, see the main text.

The most significant differences between bulk and confined EG(nPEO) are observed at
energy transfers below 1000 cm−1 (shaded regions II-V in Figure 3). INS spectral bands either
disappear, shift, or broaden in confined EG(nPEO) compared to the bulk. We can rationalize
these results in terms of restricted EG(nPEO) motions within the 2D GO interlayer. These
spectral regions are discussed in more detail below.

Region II: CH2 rocking modes [r(CH2)] in the spectral range 800-1000 cm−1 are particularly
sensitive to macromolecular conformation for nPEO (i.e., trans and gauche conformers). These
spectral features are also quite sensitive to temperature, dilution, metal coordination, and
geometric constraints [20, 16, 21, 17, 18]. The band at 846 cm−1 corresponds to trans-gauche-
trans (tgt) conformations of CCOC, OCCO, and COCC groups in crystalline nPEO. This band
moves down to 831 cm−1 in the amorphous phase for the quenchable 5PEO bulk material [10],
indicating a sensible increase in the population of trans conformers. In intercalated nPEO,
this band moves further down to 814 cm−1 as a result of the predominance of trans-trans-trans
(ttt) geometries [18, 20]. This assignment is further corroborated by the red shift and intensity
suppression of the peak at 953 cm−1 and 943 cm−1, corresponding to tgt conformations in the
crystal and in the amorphous phase, respectively. Table 1 summarizes the position of r(CH2)
bands for crystalline, amorphous, and confined 5PEO.

Region III: this spectral range (480-600 cm−1) provides information on the molecular
conformation of EG. On the basis of infrared and Raman data for liquid and solid EG [22, 23],
as well as for EG confined in silica-glass pores of radii 3-7 nm [24], the INS band at 523
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cm−1 corresponds to the asymmetric CCO bending mode of the OCCO skeleton of the gauche
conformer for crystalline EG [10]. The presence of a broad INS peak at 521 cm−1, as well as the
absence of a peak at 482 cm−1(trans conformers [22]) for EG/GO indicates that EG adopts a
disordered gauche conformation upon confinement.

Table 1. INS bands corresponding to CH2 rocking vibrations in crystalline, amorphous, and
confined 5PEO.

phase Band 1 Band 2 conformation

crystalline 953 846 tgt
amorphous 943 831 intermediate
confined 928 816 ttt

Region IV: changes in the longitudinal-acoustic-mode (LAM) region (150-400 cm−1) [19]
provide more evident signatures of changes to macromolecular conformation. These bands
correspond to complex modes associated with collective vibrations along the polymer chain.
From the INS data, the absence of peaks in the LAM region for all confined nPEO chains as
compared to their bulk counterparts is quite apparent. Such a result is largely insensitive to
molecular size and suggests the emergence of a new set of chain length scales primarily dictated
by the presence of anchoring points on the GO substrate upon intercalation.

Region V: the low-energy bands at 74 (VI) and 115 cm−1 (VII) arise from either torsional
COC or CO internal rotations in nPEO. These features are considerably broader in the confined
phase and closely resemble the vibrational density of states of a disordered amorphous polymer
[25].

3.2. Host effects
The previous section has shown that the extreme two-dimensional confinement of EG and
nPEO in GO at subnanometer length scales induces profound changes to the structure and
dynamics of the polymer phase. In the present section, we address the question as to whether
polymer-substrate interactions or purely geometric restrictions are the driving force governing
this behaviour. To this end, we prepared and investigated a series of 2135PEO/GO intercalates
with a variable degree of GO oxidation, as well as a specimen consisting of 2135PEO adsorbed
on thermally reduced G sheets. The amount of intercalated PEO in GO varies from 9 to 27
wt% as the degree of oxidation is increased from an oxygen-to-carbon atomic ratio (O/C) of
0.29 to 0.39 [13]. From this point onwards, the amount of intercalated PEO undergoes a slight
decrease to 23 wt% at 0.40 O/C. The INS and DSC data of these materials are quite insensitive
to the degree of oxidation of the underlying GO host. In contrast, these data show significant
differences in the behaviour of the adsorbed 2135PEO phase on G (PEO/G) compared to the
intercalated 2135PEO phase [9]. The amount of PEO adsorbed on G increases to 28 wt% in
spite of the low O/C of G (0.13), a result which can be explained in terms of the high (open)
surface area characteristic of this material (BET area ca. 630 cm2/g). Moreover, the DSC
data for 2135PEO exhibits a clear glass transition (Tg) at 209 K and melting (Tm) at 304 K,
noticeably lower than those of the bulk material (218 and 333 K, respectively). The INS data
show clear differences in the spectrum of 2135PEO/G compared to that of 2135PEO/GO (see
reference [9]). In particular, the CH2 rocking band at 815 cm−1 in 2135PEO/GO shifts to
835 cm−1, an intermediate energy between that of the confined and the crystalline 2135PEO
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phase (846 cm−1). This spectral shift indicates a sensible increase in the population of gauche
conformers in 2135PEO/G compared to that in 2135PEO/GO. Table 2 summarises the CH2

rocking-band positions for bulk-crystalline and confined specimens in GO and G. These findings
are consistent with our DSC experiments showing clear signs of crystal melting in PEO/G. From
the present comparison between GO- and G-based materials, we conclude that the geometry of
the host medium plays a critical role at dictating the ultimate properties of the confined polymer
phase, particularly under conditions of extreme (subnanometer) spatial confinement.

Table 2. INS bands (in cm−1) corresponding to the CH2 rocking vibrations of methylene groups
in 2135PEO in the bulk crystal, intercalated in GO, and adsorbed onto G sheets.

phase peak 1 peak 2 conformation

crystalline 946 845 tgt
adsorbed on G 930 835 intermediate
intercalated in GO 914 815 ttt

4. Perspectives
High-resolution neutron spectroscopy provides access to structural and dynamical information
on confined hydrogenous materials not accessible by any other experimental probe. As the
present work highlights, basic prerequisites include access to a broad range of energy transfers
(0-4000 cm−1) as well as tight resolution (1-2 %) across the entire spectral range. The former is of
particular relevance to assess the effects of spatial confinement on both intra and intermolecular
modes, whereas the latter is of paramount importance in order to follow subtle yet at the
same time significant changes to macromolecular conformation in the fingerprint region of the
vibrational spectrum below 1500 cm−1. At the present time, the TOSCA spectrometer at
the ISIS Facility provides these unique capabilities on a routine basis, yet we note that both
LAGRANGE at the ILL (France) and VISION at the SNS (USA) are now in a position to tackle
these challenges with success as well. The present INS measurements have been restricted to
low temperatures as our primary objective was to probe the VDOS of the confined hydrogenous
phase. Notwithstanding the above, extension of these high-resolution INS studies to higher
temperatures also offers the exciting prospects of studying the emergence of critical phenomena
such as two-dimensional melting in these complex materials. Such a task is significantly
more intricate than previous studies of atomic and molecular intercalation in pristine graphite
[26, 27, 28, 29], and might well require a judicious combination of both inverted- and direct-
geometry INS instrumentation in order to cover a sufficiently broad spectral range with adequate
resolution.

To conclude, we note that further work is also underway to validate detailed computational
models of extreme molecular and macromolecular confinement in well-defined nanostructured
materials using INS, as well as to link polymer conformation and vibrational structure with
the dynamical response and transport properties of these novel materials at longer time scales,
accessible via quasielastic neutron scattering techniques and dielectric spectroscopy.
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