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Abstract. In a recent article, the combined e↵ects of the sample environment and instrument
collimation have been described for the dedicated instrument for amorphous systems at ILL
(D4) [1]. This undesirable e↵ects on the di↵ractograms force to make complex and careful
absorption corrections, which not always produce good enough results. In such cases, parts of
the detector banks must be discarded with the consequent lose of statistics. This experimental
problem can be used to obtain the transmission of the sample by an indirect way.

Considering the most generalized case of a cylindrical sample with a cylindrical sample
environment (furnace, cryostat, etc), the di↵ractogram can be described as coming from three
di↵erent sources: the sample itself, the upstream and downstream sample environment. These
sources produce three well-di↵erenced regions on the individual di↵ractograms observed by
one particular detector. These three di↵erent measured signals are linear combination of the
sample, upstream and downstream intensities produced by each source. In this way, upstream
and downstream intensities can be determined, and the experimental transmission of the sample
can be obtained. The experimental results corresponding to the standard cryostat are compared
with the theoretical calculation of the transmission for a series of samples measured at D4 over
the past years. This comparison shows that an undesirable e↵ect observed on the di↵ractograms
could even be useful under some circumstances.

1. Introduction

The transmission of a sample is useful to perform attenuation corrections in scattering

experiments. This magnitude gives also the possibility of determining the macroscopic cross

section of the sample, which contains the global density of the system.

It is not always easy or possible to perform a direct measurement of the transmission. When

it is possible the intensity of the incident beam (no sample in the beam) and the transmitted

intensity through the sample should be registered by a detector placed behind the sample position

in the beam direction. If the intensity is to high, an attenuator should be placed in front of the

detector to avoid any damage. The transmission of the sample is simply calculated as the ratio

of the transmitted intensity I and the incident intensity I
0

T = I/I
0

, (1)

where a slab geometry is assumed.

In the case where a sample environment is necessary to perform the experiment, the walls

of this device (cryostat, furnace, etc) will be additional sources of radiation being registered by

the detector. Usually these walls can not be neither too far from nor too close to the sample
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position, i.e. at some centimeters of the sample. In this way, the intensity scattered by the walls

placed upstream and downstream are useful to determine the transmission of the sample [1],

without placing a detector in the direct beam, just a detector located at a wide angle position is

necessary. The problem is that without collimation in front of the detector, the signals coming

from the three sources will be registered together, avoiding in this way any determination of the

transmission. The D4 collimation allows this kind of measurements, as it will be shown below.

2. Geometrical e↵ects

The cylindrical symmetry of a two axis di↵ractometer advice the use of cylindrical samples and

environments. Thus the sample environment (a cryostat, a furnace or others) can be represented

by a cylindrical screen around and centered at the sample position (see Fig. 1 taken from [1]).

Figure 1. Sketch of the di↵ractometer device.

Now we focus the discussion on a particular neutron di↵ractometer having a series of detector

banks, each one with a collimation [2]. This collimation is designed in order to register the

sample signal with the whole surface of the detector, but tight tight to su�ciently reduce the

background. What happens with this collimation is that the central part of the detector sees

the sample plus the two extra sources, upstream and downstream, coming from the sample

environment. The low-angle part of the detector can only see the upstream signal plus the

sample, while the high-angle part can see the sample plus the downstream signal. Figure 2

shows a typical di↵ractogram, where we can clearly identify the observed signal in the high-,

mid- and low-angle regions as I
1

, I
2

and I
3

, respectively (where I
3

< I
1

< I
2

). I
3

is smaller than

the others due to the attenuation of the sample. In this way, the relationship between these

observed intensities and the point sources is

8
<

:

I
1

= I
u

+ I
s

I
2

= I
u

+ I
s

+ I
d

I
3

= I
s

+ I
d

, (2)

or

8
<

:

I
u

= I
2

� I
3

I
s

= I
1

� I
2

+ I
3

I
d

= I
2

� I
1

, (3)
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where I
s

, I
u

and I
d

are the intensities scattered by the sample, upstream and downstream sources,

respectively. These expressions allow the calculation of the experimental sample transmission

T
s

simply using the Eq. (1) where I
d

and I
u

are I and I
0

, respectively.

We can also obtain a theoretical expression for the transmission of a cylindrical sample of

radius R,

T
c

= exp(�⇡

2

n � R), (4)

where n is the atomic density of the sample (number of scatterers per unit volume) and � is

the total (scattering plus absorption) neutron cross section. In the evaluation of the absorption

cross section, we use the wavelength-dependent expression

�
abs,� =

�

�
th

�
abs

, (5)

where �
abs

and �
th

are the absorption cross-section and wavelength for thermal neutrons,

respectively.

Figure 2. Typical shape of the registered signal on a given detector. The three levels of intensity

corresponding to the low- (I
1

), mid- (I
2

) and high-angle (I
3

) regions are shown.

3. Experiments

The di↵raction experiments were performed at the two-axis di↵ractometer D4, ILL, Grenoble,

France [2]. We analyzed two independent sets of experiments on a cylindrical vanadium sample

of 6.37 mm diameter placed at the center of a cryostat tail also made of vanadium (50 mm

inner-diameter and 0.45 mm thick). The incident neutron wavelength was of 0.5

˚

A and both

experiments were performed at room temperature.

Data sets for each experiment correspond to di↵erent positions of the detection ensemble

constituted of 9 banks of detectors, each one with 64 detection cells. The signal of the 9 banks

are independently registered, but only those detectors clearly a↵ected by the shadow e↵ect were

used in the evaluation of the three levels of intensity (I
1

, I
2

and I
3

). This shadow e↵ect (Fig. 2)

is maximum for those detectors placed near a scattering angle of 90

�
. In this way, for the first

experiment we could collect 49 independent set of data, while for the second we collected 102

independent data.

For each set of data, constants were fitted to the three observed levels of intensity I
1

, I
2

and I
3

. These three constants are the input values for Eq. (3), allowing the obtention of the

experimental upstream and downstream intensities.
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4. Results and discussion

For vanadium, the scattering cross section is 5.1 b and the absorption cross section for thermal

neutrons (1.8

˚

A) is 5.08 b [3]; the absorption cross section corresponding to the wavelength of

0.5

˚

A is 1.41 b, giving a total cross section of 6.51 b. The vanadium density is ⇢ = 6.11 g/cm

3

,

which corresponds to an atomic density of n = 0.07223 ˚

A

�3

(n = ⇢/M
mol

N
A

, where N
A

is the

Avogadro’s number and M
mol

= 50.9415 g/mol is the molar mass). Using these values and the

Eq. (4), the theoretical value for the sample transmission is 0.791± 0.003.
From the two sets of experimental data, and using Eqs. (1) and (3), we obtain the

experimental transmission of the sample 0.75 ± 0.06 and 0.73 ± 0.13. These values compares

very well with the theoretical one, confirming the validity of the proposed method.

It is worth noticing that the experimental values are slightly smaller than the theoretical one.

This could be explained by the approximations of point sources, made to deduce the relationship

between the sources and the observed intensities (Eq. (2)). In fact, the neutron beam is bigger

than the sample diameter; in this case, the beam width was of 11 mm meaning that only 55% of

the incident beam will pass through the sample. Consequently, part of the beam scattered by the

downstream source has not been attenuated by the sample. Taking into account the focalization

of the neutron beam on the sample position, the scattered intensity by the downstream source

should be reduced by 43%. Thus, the new transmission can be obtained multiplying the previous

experimental values by a factor of 0.45/0.43 = 1.05, which yields to the following values for the

experimental transmissions: 0.79± 0.06 and 0.77± 0.13, much closer to the theoretical value.

There is an experimental way to take into account this background e↵ect. Replacing the

sample by an absorbent, the scattered beam not attenuated by the sample can be directly

measured. The absorbent sample depends on the energy of the incident neutrons, being Boron

the best one for hot neutrons and Cadmium for thermal neutrons. This background could be

subtracted from the experimental data and the e↵ect will be more important for the I
u

intensity

than for the I
d

, which naturally will produce a higher transmission value.

This method could be applied for all the working wavelengths on the instrument, because

no influence of the neutron wavelength is expected, except by the known dependence of the

absorption cross section with the neutron energy (Eq. (5)).

5. Conclusions

The transmission of a known cylindrical sample has been theoretically calculated using the

its density and macroscopic total cross section. This value is in a very good agreement with

two independent experimental values obtained applying the method proposed in this article.

The method consists in using the scattered signals from the upstream and downstream sample

environment as incident and transmitted intensities. Thanks to the instrument collimation,

these signals are easily observed on the detection banks as a double step function (Fig. 2). A

priori this is an undesirable (but correctable) e↵ect observed on the di↵ractograms; however it

has been demonstrated that it could be useful under some circumstances.
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