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Abstract.
We report calculations of hydrogen line shapes in tokamak edge plasma conditions. A special

emphasis is put on the motional Stark effect that arises due to the electric field v⃗ × B⃗ present
in the frame of reference of an atom moving at a velocity v⃗. The statistical repartition of the
velocities results in a broadening of the lines, which can be significant if the upper level of the
transition under consideration is high. Applications to Balmer lines are shown here.

1. Introduction
Line shape models are routinely used in magnetic fusion for diagnostic purposes, given the
dependence of spectra on the plasma parameters. Hydrogen Balmer line series with a high
principal quantum number n (up to 10 and higher) have been observed in divertor plasmas at
conditions such that a large amount of excited atoms is present (recombining “detached plasma”
regime) [1, 2, 3]. It is widely recognized that an analysis of the width of such lines yields
information on the electron density, given their sensitivity to Stark broadening. However, as
already noticed in [1], the electron density may not be sufficiently high so that other mechanisms
contribute significantly to the line broadening. The effect discussed in this work concerns the
Stark broadening due to the Lorentz field F⃗L = v⃗× B⃗ present in the emitters’ frame of reference
(motional Stark effect or MSE). Several works have reported on this effect in magnetized plasmas.
Analytical expressions have been obtained for Lyman and Balmer hydrogen lines with a low
upper principal quantum number n, in magnetic fusion conditions [4, 5], in high-density plasmas
[6], and also in astrophysics [7, 8]. A rough estimate indicates that this broadening scales as
n2B

√
Tat (with Tat being a characteristic atomic temperature), meaning that this additional

broadening can enter in competition with the other line broadening mechanisms for lines with a
sufficiently high n, provided the magnetic field and the atomic temperature are sufficiently high.
Note, this effect is to be distinguished from the MSE splitting involved in active spectroscopic
diagnostics based on highly energetic neutral beams with a strongly shifted velocity distribution
function (e.g. [9]). We report here on recent investigations of high-n Balmer line shapes [10]
and perform new calculations of MSE broadening.

2. Line shapes in magnetized plasmas
The development hereafter follows the lines of [10]. Consider a set of atoms immersed in a
magnetized plasma. The spectral profile of a line, I(ω, n⃗), is given in terms of the line profile in
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the atom’s frame of reference I0(ω, n⃗) by the following integral (Doppler convolution)

I(ω, n⃗) =

∫
d3vf(v⃗)I0(ω − ω0v⃗ · n⃗/c, n⃗). (1)

Here, ω0 is the central angular frequency of the line under consideration, ω and n⃗ denote the
frequency and the observation direction, and f(v⃗) is the atomic velocity distribution function
(VDF). For Maxwellian VDF, the line shape is a Gaussian function if there is no broadening
mechanism in the atom’s frame of reference [i.e. when I0(ω, n⃗) ≡ δ(ω − ω0)] and a Voigt
function if natural broadening is retained. In the general case, I0(ω, n⃗) is proportional to the
Fourier transform of the atomic dipole autocorrelation function Cn⃗(t):

I0(ω, n⃗) ∝
1

π
Re

∫ ∞

0
dtCn⃗(t)e

iωt, (2)

Cn⃗(t) = Tr
{
d⃗⊥(0) · d⃗⊥(t)ρ

}
. (3)

Here, the trace is performed over the atomic states and denotes a statistical average, ρ is the
projection of the density operator to the atom’s Hilbert space evaluated at initial time, the
brackets {...} denote an average over the perturber trajectories (classical path approximation),

and d⃗⊥ = d⃗− (d⃗ · n⃗)n⃗ denotes the projection of the atomic dipole operator onto the polarization
plane, in the Heisenberg picture. In Eq. (3), restrictions of this operator between the upper and
lower levels of the transition are implied (no-quenching approximation). Formally, this means

that a projector to the final states has to be included between d⃗⊥(0) and d⃗⊥(t). We do not write
it here for the sake of simplicity. It is customary to write the autocorrelation function in terms
of the evolution operator U(t). Because of the identity d⃗⊥(t) ≡ U †(t)d⃗⊥(0)U(t), a calculation

of the line shape requires the knowledge of the matrix elements of d⃗ and an evaluation of U(t).
The evolution operator obeys the time-dependent Schrödinger equation

ih̄
dU

dt
(t) = [H0 + V (t)]U(t). (4)

Here H0 is the Hamiltonian including both the atomic energy level structure (with a non-

Hermitian part accounting for natural broadening) and the Zeeman effect, and V (t) = −d⃗ · F⃗ (t)
is the time-dependent Stark effect term (Schrödinger picture) resulting from the action of the

microscopic electric field F⃗ (t). When this term is neglected, the Schrödinger equation has
the trivial solution U(t) = exp(−iH0t/h̄), which shows, using Eqs. (3) and (2), that I0(ω, n⃗)
reduces to a set of delta functions (or Lorentzian functions if the natural broadening is retained).

By contrast, the case where F⃗ (t) is significant is much more intricate because there is no
general exact analytical solution. Several models, based on suitable approximations, have been
developed in such a way to provide an analytical expression for the line shape (e.g., the impact
and static approximations; the model microfield method; etc.). Fully numerical simulations can
also be used.

In the presence of a magnetic field, the atom “feels” an electric field F⃗L = v⃗× B⃗ present in its
frame of reference (Lorentz field), which results in an additional Stark effect term −d⃗ · F⃗L that
must be retained in the Hamiltonian (motional Stark effect or MSE). The evolution operator,
the autocorrelation function and thus the line profile I0 depend on v⃗ [i.e. I0(ω, n⃗) ≡ I0(ω, n⃗; v⃗)],
so that the integral in Eq. (1) is no longer a convolution. A common approximation done
in the case of a strongly shifted velocity distribution function (e.g., for an energetic quasi-
monokinetic neutral beam) consists in evaluating the Lorentz field at the average velocity v⃗0.
This approximation has been used for diagnostic purposes in the interpretation of MSE spectra
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Figure 1. Plot of the thermal Lorentz field in terms of the magnetic field, assuming a Maxwellian
gas of deuterium atoms at the temperature Tat = 1 eV. At low densities, the Lorentz field can
be larger than the Holtsmark field, indicating that the TMSE can exceed the usual (microfield)
Stark broadening.

in tokamaks [9]; such experiments consist in injecting a beam of neutrals, sufficiently energetic
so that the MSE yields a splitting of the hydrogen lines that exceeds the other line broadening
mechanisms. In a plasma with a thermal velocity distribution function (e.g., a Maxwellian
function with v⃗0 = 0⃗), the MSE splitting due to the thermal motion of the emitters (which
will be referred to as thermal MSE, or TMSE in the following) is not strong enough and the
corresponding effect on spectra is a broadening of the line under consideration. This broadening
can be significant with respect to other line broadening mechanisms (see Fig. 1).

3. Calculation of spectra
We have calculated profiles of Balmer lines with a high upper principal quantum number using
the simulation method. In the plasma-microfield-Stark broadening model, the ions are described
as particles moving along straight lines around the emitter, in a cube with periodic boundary
conditions; the initial conditions (on the positions and velocities of the perturbers) are generated
randomly; correlations are retained through the use of a Debye electric field model; and the
broadening due to the electrons is described with a collision operator. The Zeeman effect and
the TMSE are retained through their corresponding Hamiltonians. Fine structure corrections
are not retained because they are negligible on lines with a high principal quantum number. The
average over the atom’s velocities Eq. (1), required for the Doppler and TMSE broadenings,
is formed by random sampling using a Maxwellian VDF. Figure 2 shows a profile of the D12

line (Balmer 12 of deuterium) obtained assuming a plasma density of 1013 cm−3, a value of 1
eV for the temperatures Ti, Te, Tat, and a magnetic field of 8 T. Such plasma conditions were
inferred from spectra analysis in a low-density discharge in Alcator C-Mod [1]. A line-of-sight
perpendicular to the magnetic field has been assumed. The TMSE yields a significant additional
broadening and more structure. In contrast, the Doppler broadening contribution is weak. This
result suggests the TMSE should be accounted for in the interpretation of high-n line shapes.
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Figure 2. Profile of the D12 line calculated at conditions relevant to a plasma discharge reported
in [1], retaining various line broadening mechanisms. The thermal MSE yields a significant
additional broadening and more structure. The Doppler broadening contribution is weak.

4. Revisiting the Inglis-Teller formula in magnetized plasmas
The Inglis-Teller limit is the upper principal quantum number n of the last distinguishable line in
a series before the lines merge into the continuum. A simple formula is provided by equating the
half separation between two consecutive energy levels ∆E ≃ EI/n

3 (with EI being the Rydberg
ionization energy) to the Stark width (3/2)n2ea0F0 associated with the plasma microfield F0

(see details in [11]). Using the Holtsmark formula for the microfield yields the following relation

Nn15/2 ≃ 0.027a−3
0 , (5)

which provides an estimate of the density N in terms of the upper principal quantum number n
of the last line. Such a procedure, with a relation similar to Eq. (5) (apart from a multiplicative
factor in the right-hand side [12]), was followed by the authors in [1] to estimate the plasma
density. The Inglis-Teller formula should be reconsidered in the case where a magnetic field is
present, because the TMSE can dominate the plasma-microfield-Stark broadening. Replacing
F0 by the Lorentz field FL estimated at the thermal velocity yields a relation that does not
contain the density, but the magnetic field-strength and the atomic temperature instead:

n10B2Tat ≃ 1.5× 1014
mat

mp
. (6)

Here the temperature is expressed in eV and the other quantities are in SI units. This expression
could serve as a diagnostic of Tat. For example, applying it to the low-density discharge reported
in [1] with n > 16 and B = 8 T yields a temperature smaller than 5 eV, which is in the range
expected from the Doppler analysis performed in [1]. Note, the Zeeman effect, not considered
here, can be significant with respect to the TMSE. The derivation of a more accurate formula,
which accounts for this effect, could be done along the lines of the analytical model reported in
[10].

5. Conclusion
We have presented an investigation of atomic line shapes broadened due to the thermal
motional Stark effect (TMSE) at conditions relevant to magnetic fusion experiments, following
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a recent work [10]. If the magnetic field is sufficiently strong, the TMSE broadening enters
in competition with the usual (Doppler, Zeeman, and plasma-microfield-Stark) broadening
mechanisms considered in diagnostic models. We have confirmed this by numerical simulations of
Balmer lines with a high principal quantum number. An adaptation of the Inglis-Teller formula
to the Lorentz field has also been considered and it has been shown that it also provides the
correct order of magnitude for the temperature. The analysis of high-n hydrogen spectra can be
used to reinforce the usual diagnostics for the atomic temperature that utilize Doppler-broadened
lines. Our work has focused on the plasma discharges in Alcator C-Mod reported in [1] because
the high-n Balmer lines observed in this machine and the strong magnetic field present therein
are also expected in the ITER divertor (detached plasma regime). The diamagnetic quadratic
Zeeman effect, not considered in this paper, may be significant on high-n lines (e.g. [13]) and
should be investigated in details in a future work.
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