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Abstract. The Two-Body Dirac equations of constraint dynamics applied to QED
yields an exact Sommerfeld-like solution for the spectrum of '.J; singlet positronium
states which agrees with standard perturbative results through order a*. At short
distance the radial part of the wave function u = 71 has two solutions with probabilities

near the origin behaving like ¥2d®r = v?drdQ = r*V @J+1)2=40%) 14y . For J #0
only the first sign is allowable but both signs for J = 0 are well behaved. The first
sign in that case corresponds to ordinary positronium (with a binding energy of about
6.8 eV). The second sign corresponds to a new positronium state with a binding
energy of about 300 keV and a root-mean-square radius on the order of a Compton
wavelength. The ordinary 1S positronium state decays into this new 1S state by
two photon emission with c.m. energy of about 300 keV. The peculiar 1S state then
annihilates promptly into two photons with c.m. energy of about 700 keV. Thus the
existence of this new positronium state would be a distinctive 4 photon decay signature
of ordinary singlet positronium.

In this paper we report on the prediction of a new positronium bound state with a
very large binding energy of about 300 keV. It results from a metastable two-photon
decay of the usual positronium bound state which has a binding energy of about 6.8 eV.
It has a size of about the Compton wave length of an electron. Once it is formed it
annihilates promptly into 2 photons with a c.m. energy of about 700 keV. Thus the
existence of this new positronium bound state would be a distinctive 4 photon decay
signature of the usual singlet bound state.

The prediction arises from an exact solution of the Two Body Dirac equations (TBDE)
of constraint dynamics applied to QED solutions for singlet S— states [1], [2]. In the
references just quoted one can examine the details of the predictions. Here we present
the highlights. Omne finds that the TBDE can be recast in a Schriodinger-like form
reminiscent of that for the hydrogen atom. The radial form of that equation displays
an invariant form of the Coulomb potential and its relativistic square,
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{—CZZ + 2, A(r) — Ag(r)} u = bu,
A(r) = —%, « -fine structure constant,
w = c.m. total energy,
¥ = &2 —m?2; two-body relativistic eigenvalue,
cw = (w?—2m?) /2w, invariant energy of relative motion,
my, = m?/w,invariant reduced mass of relative motion .(1)

This equation has the short distance (r << «/2e,,) behavior

> a?
{_dr?_r?}uzo’ (2)

with solutions

Uy ~ P11 usual
u_ ~ 7T peculiar
A = (—1+£+V1—-4a?)/2. (3)

With these behaviors, the probability for the relative location of the electron and positron
is
2

V2B = %TerdQ — w2 drdQ) = rFVI1?) g, (4)
This is clearly finite for both signs. Thus both behaviors are physically acceptable. If we
have a nonzero angular momentum with J # 0 such that J(J+1)—a? > 0 then the second
(peculiar) solution would not be physically acceptable. The peculiar solution would
also not be acceptable if the electron and positron were not point particles (A # —a/r).
Thus, finding these peculiar states would strongly support that the electron be a point
particle.

Treating the —a? /r? terms as a negative angular barrier, the solutions can be obtained
analytically for both the usual and peculiar bound states 'Sy. The corresponding sets of
eigenvalues for the total invariant c.m. energies w4, in terms of the principle quantum
number n are

win:m\/Q—i—Q/\/l—l—aQ/(n:I: d—a?—1/2), (5)

For the usual states, the bound state eigenvalues w,, agree with standard QED
perturbative results through order a*

)

win = 2m —ma?/4n® — mat/2n®(1 — 11/32/n) + O(a®), n =1,2,3, ... (6)
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For the set of peculiar states, the ground state (n = 1) has mass

w1 = m\/Q + 2/\/1 +a2/(1/2 = /1/4 - a?)2 ~ V2m\/1 + . (7)

This represents a very tightly bound state, one with a binding energy on the order of
300 keV for an ete™ state and a root mean square radius on the order of a Compton
wave length instead of an angstrom.

We now give a brief overview of the constraint Two Body Dirac Equations [3], [4],
and how they lead to the above form given in Eq. (1) and the tentative new bound
state. In the covariant constraint formalism for two spin-one-half particles interacting
by through four-vector potentials there is a Dirac-like equation for each particle,

D1y = (m-(pr— A1) +m)=0
Dy = (72 (p2 — A2) + ma)y = 0. (8)

The tildas symbolize the restrictions on the potentials that come from the mathematical
requirement that the constraints be compatible[5],

[D1, Do]yp = 0. (9)

and the connection to quantum field theory by way of what has been called the quantum
mechanical transform[6] of the Bethe-Salpeter equation [7]. This leads to the four vector
potentials A;, Ay that depend on an invariant function A(z)) and its gradient as well
as energy, momentum, and spin dependence through the gamma matrices,

Ai = Ai(A(ZCJ_),8A($J_)7w>p17p21717’72)' (1())

The invariant A is a function of the separation four-vector,

= (21— x2)y (" — PFPY/P?),
P = p1+p27
Pz, = 0 (11)

perpendicular to the total four-momentum. For QED in lowest order,

Aws) =~
ro= el 2= (0r) in e (P = (w,0)). (12)

The relative momentum is space-like

P.pih=0, (13)

so that combined with Eq. (12) we see that the compatibility condition leads to a
covariant three dimensional formalism. For equal masses p = (p; — p2)/2.
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The wave function that satisfies the simultaneous equations (8) has 16 components
given in terms of 4 four component spinors

¥ = (1,12, 13, 14)- sixteen component spinor. (14)

In the cm. frame P = (1,0) and # = (0,%). We defined [1] the 4 component wave
functions ¥+, n+

Yy = exp(—F(r) — K(r)or-foat) (1 £ ¢4)
Ny = exp(—F(r) — K(r)oy-ToaT) (Y2 £ 13) (15)

and performed a Pauli reduction to 4 - uncoupled four-component Schrédinger-like
equations. For ¢y we found

B*), = {p? + ®(r,m1, ma, w, 01, 02) b

= {p®+ 260 A~ A2+ Op(A VA VZA) + L- (0,4+02)Ps0(...)
+o1-fogtL - (0,+02)Ps07(...) + 01:02Pss(..) + (301-Fog T — 01:02)Dp(..)
+L - (0,—02)®gop(..) +iL-o1x02Psox(..) }+

Ry, (16)

The Darwin and various spin-dependent terms are dependent on the invariant A and
its derivatives. The attractive spin-spin and repulsive Darwin quasipotentials are quite
strong (individually they overwhelm —.A42) but for equal mass spin singlet states we have
their exact cancellation ®p + o1-02Pgg = 0, leading to the bound state radial equation
given in Eq. (1)

One finds that the lowest lying usual and peculiar states are not orthogonal with
respect to one another. To see this we write their respective radial forms
A eXp(_’{ﬁLE’LU+ Oé'l“),
2 1

Ky = = ,
- 1+vVI—4a2 Ap+1

ugp(r) = cyqr

u_(r) = c_r™Tlexp(—k_ey_or),
2 1
Ko = = , 17
1—+vV1—4a2 A +1 (17)
Clearly since they are both zero node solutions we have
(ufuy) = / drus (M (r) ~ (032 ~ 1/1000) £ 0. (18)
0

How do we reconcile this with the expected orthogonality of the eigenfunctions of
a self-adjoint operator corresponding to different eigenvalues? Omne can show that
the second derivative is not self-adjoint in this context! But we have that for the
quasipotential of the type —a?/r? at short distances, both the set of usual states and
the peculiar states are physically admissible states. There does not appear to be reasons
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to exclude one set as being unphysical, given the attractive interaction as it is near the
origin.

Only for interactions with sufficient attraction at the origin (so that —1/4 <
A(A+ 1) < 0) can the peculiar states be pulled into existence and appear as eigenstates
in the physically acceptable sheet, with regular non-singular radial wave functions at
the origin. It is desirable to find ways to admit both types of physical states into a
larger Hilbert space to accommodate both sets of states with the mass operator B2 to
be self-adjoint and the states to be part of a complete set. It is reasonable to assign a
quantum number which we call “peculiarity” for a states emerging into the physical sheet
in this way as physically acceptable states. The introduction of the peculiarity quantum
number enlarges the Hilbert space, allows the mass operator B2 to be self-adjoint, and
the set of physically allowed states become a complete set.

We introduce a new peculiarity observable ¢ with the quantum number peculiarity ¢
such that

é)@r = (x+ with eigenvalue ( = +1,
Cx— = (x_ with eigenvalue ¢ = —1, (19)

with the corresponding spinor wave function y. assigned to the states so that a usual
state is represented by the peculiarity spinor x,

X+ = (é) ) (20)

and a peculiar state is represented by the peculiarity spinor y_,

w=(1): @)

With this introduction, a general wave function can be expanded in terms of the complete
set of basis functions {uyn,u_,} as

V= Z AenUen X ¢y (22)
(n

where n represent all the spin and spatial quantum numbers of the state and ( the
peculiarity quantum number. The variational principle applied to

(0|82 W)
(B?) = ot (23)
(W]w)
would lead to
BruinXx+ = —Ki,UpnX+
Bu_,x- = —r%u_nx_. (24)

It is clear that in this context the usual and peculiar wave functions are orthogonal, B2
is self-adjoint, and the basis states are complete. We see that the introduction of the
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peculiarity quantum number resolves the problem of over-completeness property of the
basis states and the non-self-adjoint property of the mass operator.

The usual 1'Sy ground state of positronium (designated by 1S,) turns into the
peculiar 118y ground state (designated by 15,) by emitting two photons similar to the
metastable mechanism by which the 25 state of hydrogen decays into the 1.5 state. The
Golden Rule in this case takes the form

d*w = 27| Ty |*d* k1 d*kod®prs,6(Ers, — Ers, — hwi — hwy)8(0 — p1s, — k1 — k), (25)

for the emission of photons characterized by (ki, 1) and (ka, a). In [2] is described in
detail the metastable decay mechanism for the usual ground state into the the peculiar
state. Our assumption above is that the peculiar and usual states by virtue of the
introduction of the operator ¢ are orthogonal. As such it would be impossible for the
15, state to decay into the 1.5, state. In that case the usual state would undergo just two
photon annihilation. We allow for the possibility that the peculiarity quantum number
is not conserved for the full hamiltonian so that there is a nonzero admixture between
the two sectors. Calling the admixture amplitude M~ we find that the branching ratio

between the metastable and annihilation channels is 0.075 ‘M«/ . We further find that
once the peculiar state is formed, it will annihilate into two photons with a c.m. energy
of 700 keV with a lifetime on the order of 102! sec.

To summarize, the TBDE of constraint dynamics applied to QED give a covariant
bound state formalism reproducing by nonperturbative treatment the correct spectra
through order a*. Applied to the 'S, states, new peculiar solutions are uncovered
for point e~et (- — r(-1=V1=40%)/2) ip addition to the usual solutions (g —

p(1-vi-da?)/ 2). The peculiar bound states, to preserve self adjointness, are distinguished
from the usual ones by a new quantum number called peculiarity. The four photon
decay signature (with one set of two photons bunching in energy around 300 keV and
one set around 700 keV) would strongly indicate the point-like nature of the electron.
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