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Abstract. New correlations, suitable for engineering applications, for the mean Nusselt
number in the entrance region of circular tubes and square ducts with uniform heat flux
boundary conditions specified at the walls are proposed. These correlations are obtained on the
basis of the results of a previous parametric investigation on the effects of temperature dependent
viscosity and thermal conductivity in simultaneously developing laminar flows of liquids in
straight ducts of constant cross-sections. In these studies, a finite element procedure has
been employed for the numerical solution of the parabolized momentum and energy equations.
Viscosity and thermal conductivity are assumed to vary with temperature according to an
exponential and to a linear relation, respectively, while the other fluid properties are held
constant. Axial distributions of the mean Nusselt number, obtained by numerical integration
from those of the local Nusselt number, are used as input data in the derivation of the proposed
correlations. A superposition method is proved to be applicable in order to estimate the Nusselt
number by considering separately the effects of temperature dependent viscosity and thermal
conductivity. Therefore, for each of the considered cross-sectional geometries, two distinct
correlations are proposed for flows of liquids with temperature dependent viscosity and with
temperature dependent thermal conductivity, in addition to that obtained for constant property
flows.

1. Introduction
In many laminar duct flows, entrance effects on fluid flow and heat transfer must be taken
into account, since the total length of the duct is comparable with that of the entrance region.
Moreover, the development of the velocity and temperature fields can be strongly affected by
temperature dependence of fluid properties. If the fluid is a liquid, the relative variations of
viscosity with temperature are the most relevant, while those of thermal conductivity are, in
general, much smaller, and those of density and specific heat capacity are almost negligible [1, 2].
As far as velocity distribution and pressure drop are concerned, the main effects of temperature
dependent fluid properties can be retained even if only viscosity is considered to vary with
temperature, while the other properties are assumed constant [1, 3]. Instead, if heat transfer
characteristics, as the Nusselt number, have to be evaluated, also the temperature dependence
of thermal conductivity must be taken into account [2].
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In previous articles, we carried out systematic analyses of the effects of temperature dependent
viscosity and thermal conductivity on forced convection in simultaneously developing laminar
flows of liquids in straight ducts with uniform wall heat flux boundary conditions [4, 5].
In particular, we obtained axial distributions of the local value of the peripherally averaged
Nusselt number for ducts of different cross-sections. We assumed that viscosity decreases with
increasing temperature according to an exponential relation, while thermal conductivity varies
linearly with temperature. Suitable dimensionless parameters, namely, the viscosity and thermal
conductivity Pearson numbers, were used to quantitatively express temperature dependence of
the corresponding properties. A finite element procedure was employed for the step-by-step
solution of the parabolised momentum and energy equations in a domain corresponding to the
cross-section of the duct [6]. Finally, a superposition method was proved to be applicable in
order to obtain accurate estimates of the local Nusselt number by considering separately the
effects of temperature dependent viscosity and thermal conductivity [4, 5].

In this paper, first we use previous numerical results for the local Nusselt number for circular
and square cross-sectional geometries [5] to obtain by numerical integration the corresponding
axial distributions of the mean, i.e., longitudinally averaged, Nusselt number. Then, on the basis
of such distributions, we obtain very accurate correlations, suitable for engineering applications.
Actually, taking advantage of the above mentioned superposition method, we propose for each
of the considered cross-sectional geometries a correlation valid for constant property flows
and two distinct correlations for flows of liquids with temperature dependent viscosity and
with temperature dependent thermal conductivity. Finally, we demonstrate that, by properly
assembling these correlations, accurate estimates of the mean Nusselt number can be obtained
in wide ranges of operative conditions. No correlations are presented here for pressure drop
parameters since, as demonstrated in previous works [4, 5], the influence of thermal conductivity
variation on pressure drop is almost negligible if compared with that of viscosity variations.
Therefore, the correlations for pressure drop parameters already proposed by the authors for
liquids with temperature dependent viscosity and constant thermal conductivity [7] can be used
for all liquids with temperature dependent properties.

2. Statement of the problem
The laminar forced convection in the entrance region of straight ducts of constant cross-sections
with uniform wall heat flux q′′w > 0 (fluid heating) is studied. Since the liquid heating is
assumed to begin at the duct inlet, uniform values of the axial velocity component u and of the
temperature t (i.e., t = te, u = ue = u and v = w = 0) are specified as the appropriate inlet
conditions, being u the average axial velocity and v and w the transverse velocity components.
The heat flux (Neumann) boundary condition q′′ = k ∂t/∂n = q′′w is applied at the solid walls,
where k is the thermal conductivity and n is the outward normal to the boundary.

Since the fluids considered here are liquids, the dynamic viscosity µ is assumed to decrease
with increasing temperature according to the widely used exponential formula [3]

µ = µe exp[−β (t− te)] (1)

where µe is the value of µ at te and β = −(dµ/dt)/µ = const is positive. The thermal
conductivity k can be assumed both to increase or decrease with increasing temperature,
depending on the fluid considered, according to the linear relation

k = ke [1 + α (t− te)] (2)

where ke is the value of k at te and α = (dk/dt)/ke = const can be both positive or negative. By
means of simple manipulations, equations (1) and (2) can be cast in the following dimensionless
forms

µ

µe
= exp(−Pnµ T ) (3)
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k

ke
= 1 + Pnk T (4)

where T = (t − te) ke/(q′′w Dh) is the dimensionless temperature, Dh is the hydraulic diameter,
Pnµ = β q′′w Dh/ke is the viscosity Pearson number (representing the ratio of the characteristic
process temperature difference q′′w Dh/ke to the characteristic temperature difference 1/β that
can produce appreciable viscosity variations) and Pnk = α q′′w Dh/ke is the thermal conductivity
Pearson number (representing the ratio of the characteristic process temperature difference
q′′w Dh/ke to the characteristic temperature difference 1/α that can produce appreciable thermal
conductivity variations).

It is worth noting that, since the density ρ and the specific heat c are constant, the local
Reynolds number Re = ρ u Dh/µ, the local Prandtl number Pr = µ c/k and the local Péclet
number Pe = Re Pr = ρ c u Dh/k all vary with temperature because of the variations of µ, of
the ratio µ/k and of k, respectively. Therefore we have µ/µe = Ree/Re and k/ke = Pee/Pe,
where Ree and Pee are the Reynolds and Péclet numbers evaluated at te. Moreover, since the
viscosity of liquids decreases with increasing temperature (β > 0), in the case of fluid heating
we have Pnµ > 0 and Ree/Re < 1, while Pnµ = 0 and Ree/Re = 1 refer to constant viscosity
fluids (β = 0). Instead, since the thermal conductivity can either increase (α > 0) or decrease
(α < 0) with increasing temperature, we have Pnk > 0 and Pee/Pe > 1 in the first case and
Pnk < 0 and Pee/Pe < 1 in the second one, while Pnk = 0 and Pee/Pe = 1 refer to constant
thermal conductivity fluids (α = 0).

As already pointed out, as the fluid temperature rises along the duct, the viscosity decreases
while Re increases. Therefore, to ensure laminar flow conditions, the local Reynolds number Reb
evaluated at the bulk temperature is only allowed to reach the maximum value (Reb)max = 2, 000,
corresponding to the maximum value xmax of the axial coordinate x, whereupon computations
are stopped. Therefore, taking into account equation (3) and the appropriate heat balance
for the duct, the following expression for the maximum value X∗max of the dimensionless axial
coordinate X∗ = x/(Dh Pee) can be obtained [4, 5, 7]

X∗max =
1

4 Pnµ
ln

[
(Reb)max

Ree

]
(5)

Numerical results of interest for the present study concern the axial distributions of the
peripherally averaged local Nusselt number Nu = hDh/ke, where h is the peripherally averaged
local convective heat transfer coefficient defined as

h =
q′′w

tw − tb
=

ke

Dh (Tw − Tb)
(6)

In equation (6), tw and tb are the peripherally averaged wall temperature and the mean
bulk temperature, respectively, and Tw and Tb are their dimensionless forms. According to
equation (6), the peripherally averaged local Nusselt number can be expressed as

Nu =
1

Tw − Tb
(7)

Axial distributions of the longitudinally averaged Nusselt number, defined as [1]

Nu =
1

x

∫ x

0
Nu dx =

1

X∗

∫ X∗

0
Nu dX∗ (8)

can be obtained by means of an appropriate numerical integration rule.
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3. Numerical procedure
If the effects of axial diffusion can be neglected (Ree > 50 and Pee > 50) and there is no
recirculation in the longitudinal direction, steady-state flow and heat transfer in straight ducts
of constant cross-sections are governed by the continuity and the parabolized Navier-Stokes
and energy equations [8, 9]. These equations are not reported here for lack of space, but they
are reported elsewere together with the boundary conditions specified on the boundaries of the
computational domain [5, 7].

A finite element procedure for the analysis of the forced convection of fluids with temperature
dependent properties in the entrance region of straight ducts [6, 7, 10] is used to solve the
model equations. The adopted procedure is based on a segregated approach which implies the
sequential solution of the momentum and energy equations on a two-dimensional domain in
the case of three-dimensional geometries and on a one-dimensional domain in axisymmetric
problems, corresponding to the cross-section of the duct. A marching method is then used
to move forward in the axial direction. The pressure-velocity coupling is dealt with using an
improved projection algorithm already employed by one of the authors (C.N.) for the solution of
the Navier-Stokes equations in their elliptic form [11]. The procedure has already been validated,
with reference to both constant and temperature dependent property fluids, by comparing heat
transfer and pressure drop results with existing literature data for simultaneously developing
laminar flows in straight ducts [6, 10, 12, 13].

4. Numerical results
In this study, two cross-sectional geometries are considered, namely circular and square, chosen
as representative of axisymmetric and three-dimensional duct geometries, respectively. The
corresponding computational domains, defined taking into account existing symmetries, are
one-dimensional and two-dimensional for the circular and the square cross-sections, respectively.
Details of finite element domain and time discretisations are reported elsewere [4, 5].

The same value of the Reynolds number Ree = 100 is assumed in all the computations.
Instead, the values Pre = 5, 20 and 100 of the Prandtl number at te are selected to take into
account the behaviours of different liquids. The corresponding values of the Péclet number
at te are Pee = 500, 2000 and 10 000. The values of the dynamic viscosity Pearson number
Pnµ = 0, 1, 2 and 4 are considered to account for reasonable viscosity temperature dependences.
Thus, for the assumed Ree, the maximum values of the dimensionless axial coordinate given by
equation (5) are X∗max = 0.7489, 0.3745 and 0.1872 for Pnµ = 1, 2 and 4, respectively. For each
nonzero value of Pnµ eight values of Pnk are selected (four positive and four negative), giving
the corresponding values of the ratio Pnµ/Pnk = β/α = ±10,±20,±40 and ±80. Thus, on the
whole, the values Pnk = 0,±0.0125,±0.025,±0.05,±0.1,±0.2 and ±0.4 are considered.

The effects of temperature dependent properties (viscosity and thermal conductivity) on
heat transfer can be illustrated by comparing the local Nusselt number Nuµk, obtained for given
nonzero values of Pnµ and Pnk, with the corresponding local Nusselt number Nuc, computed
for simultaneously developing constant property flows (Pnµ = Pnk = 0). Therefore, we can
assume the value of the ratio (Nuµk − Nuc)/Nuc = (Nuµk/Nuc) − 1 as a measure of the effects
of both temperature dependent viscosity and thermal conductivity. Axial distributions of the
ratio Nuµk/Nuc with reference to the dimensionless coordinate X∗, obtained by means of the
numerical procedure described in Section 3 for the same cross-sectional geometries and values
of dimensionless input parameters considered in this paper, are reported elsewere [4, 5]. The
conclusion reached there is that both temperature dependent viscosity and thermal conductivity
can have comparable effects on the Nusselt number, according to the values of Pnµ and Pnk.
Moreover, it has been demonstrated that if the effects of temperature dependent viscosity and
thermal conductivity are considered separately to compute Nuµ (under the assumptions of
temperature dependent viscosity and constant thermal conductivity, i.e., Pnµ > 0 and Pnk = 0)
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and Nuk (under the assumptions of temperature dependent thermal conductivity and constant
viscosity, i.e., Pnk 6= 0 and Pnµ = 0), a superposition method is applicable in order to obtain
approximate values of the Nusselt number Nuµk, according to the relation

Nuµk −Nuc ∼= (Nuµ −Nuc) + (Nuk −Nuc) (9)

with an accuracy which can be considered satisfactory in most situations. With reference to the
ratios Nuµk/Nuc, Nuµ/Nuc and Nuk/Nuc, equation (9) can be recast in the form [4, 5]

Nuµk
Nuc

∼=
(

Nuµk
Nuc

)′
=

Nuµ
Nuc

+
Nuk
Nuc

− 1 (10)

where (Nuµk/Nuc)
′ is the approximate value of Nuµk/Nuc given by the superposition method.

Therefore, the values of the differences (Nuµ/Nuc)−1 and (Nuk/Nuc)−1 approximately measure
the separate effects of temperature dependent viscosity and thermal conductivity, respectively.

In this work, previous numerical results concerning axial distributions of the ratios Nuµk/Nuc,
Nuµ/Nuc and Nuk/Nuc [5] have been used to obtain, by means of a suitable numerical integration
rule according to equation (8), the corresponding distributions of the ratios Nuµk/Nuc, Nuµ/Nuc
and Nuk/Nuc. Then, it has been verified that the following relation, obtained by combining
equations (8) and (9), still holds true with an accuracy which can be considered satisfactory in
most situations

Nuµk

Nuc
∼=
(

Nuµk

Nuc

)′
=

Nuµ

Nuc
+

Nuk

Nuc
− 1 (11)

In equation (11), (Nuµk/Nuc)
′ represents the approximate value of Nuµk/Nuc given by the

superposition method. Axial distributions of the ratio (Nuµk/Nuc)
′ for the highest values

of Pnµ, i.e., Pnµ = 2, and Pnµ = 4, different values of Pnk and Pre = 20 are reported in
figures 1 and 2 for circular tubes and square ducts, respectively, to allow the comparison with
the corresponding distributions of Nuµk/Nuc. As can be seen, even for the highest values of Pnµ
and the highest/lowest values of Pnk the dashed curves, representing axial distributions of the
ratio (Nuµk/Nuc)

′, are very close to the solid ones giving the numerical solutions for Nuµk/Nuc,
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Figure 1. Comparison of axial distributions of the ratios Nuµ,k/Nuc and
(
Nuµ,k/Nuc

)′
for

simultaneously developing laminar flows in circular tubes with Pre = 20, different values of Pnk
and: (a) Pnµ = 2 and (b) Pnµ = 4.
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Figure 2. Comparison of axial distributions of the ratios Nuµ,k/Nuc and
(
Nuµ,k/Nuc

)′
for

simultaneously developing laminar flows in square ducts with Pre = 20, different values of Pnk
and: (a) Pnµ = 2 and (b) Pnµ = 4.

thus confirming the validity of equation (11). Moreover, the maximum positive and negative
relative errors in the approximation of Nuµk/Nuc by means of (Nuµk/Nuc)

′ are ε+max = 0.15%
and ε−max = −0.28% for circular ducts and ε+max = 0.42% and ε−max = −1.39% for square ducts
in the range 10−4 ≤ X∗ ≤ X∗max with Pre = 5, 20 and 100 and different values of Pnµ and Pnk.
Therefore, we can conclude that the agreement between computed and approximate results is
very good.

5. Correlations for the mean Nusselt number
Taking advantage of equation (11), a correlation for Nuµk has been obtained by assembling the
different correlations for Nuc, Nuµ/Nuc and Nuk/Nuc obtained from computed results for flows
of liquids with constant property (Pnk = Pnµ = 0), temperature dependent viscosity (Pnk = 0
and Pnµ > 0) and temperature dependent thermal conductivity (Pnµ = 0 and Pnk 6= 0),
respectively.

5.1. Correlations for the mean Nusselt number for flows of liquids with constant properties
The results obtained for circular and square cross-sectional geometries under the assumption of
constant property flow (Pnk = Pnµ = 0) have been used to obtain correlations for the mean
Nusselt number Nuc as a function of X∗ in the form

Nuc = (Nuc)fd +
a (X∗)−m

1 + b (X∗)−n
(12)

where (Nuc)fd, i.e., the asymptotic value of Nuc for fully developed conditions, the coefficients
a and b and the exponent m only depend on the cross-sectional geometry, while the exponent n
also depends on the Prandtl number Pre according to the relation

n = n1 Prse − n2 Pre (13)

whose coefficients n1 and n2 and the exponent s only depend on the cross-sectional geometry.
The appropriate forms of equations (12) and (13) for circular and square cross-sections, valid
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Table 1. Correlations for Nuc corresponding to equations (12) and (13) for circular and square
cross-sections.

Cross-section Correlations for Nuc

circular
Nuc = 4.3636 +

0.065 (X∗)−1.3

1 + 0.10 (X∗)−n

n = 0.761 Pr0.0224e − 0.000109 Pre

square
Nuc = 3.0874 +

0.065 (X∗)−1.3

1 + 0.11 (X∗)−n

n = 0.755 Pr0.0255e − 0.000136 Pre

for 5 ≤ Pre ≤ 100 and 10−4 ≤ X∗ ≤ X∗max, are reported in table 1. Since, for Pre = 5, 20 and
100, the maximum positive and negative relative errors in the approximation of Nuc by means
of equation (12) are ε+max = 0.80% and ε−max = −1.29% for circular ducts and ε+max = 2.20% and
ε−max = −1.31% for square ducts, we can conclude that the agreement between computed and
approximate results is very good.

5.2. Correlations for the mean Nusselt number for flows of liquids with temperature dependent
viscosity
The results obtained for circular and square cross-sectional geometries for Pnk = 0 and Pnµ > 0
have been used to obtain correlations for the ratio Nuµ/Nuc as a function of X∗ in the form

Nuµ

Nuc
= 1 +

[(
Nuµ
Nuc

)
fd
− 1

]
{1− exp [−a (X∗)m − b (X∗)n]} (14)

In equation (14), (Nuµ/Nuc)fd is the asymptotic value for fully developed conditions of the ratio
Nuµ/Nuc, which can be evaluated by means of the very accurate formula(

Nuµ
Nuc

)
fd

= 1 + d1 Pnµ + d2 Pn2
µ (15)

whose coefficients d1 and d2 depend on the cross-sectional geometry. Besides, still with reference
to equation (14), the coefficient b and the exponent n only depend on the cross-sectional
geometry, while the coefficient a and the exponent m also depend on the viscosity Pearson
number Pnµ and on the Prandtl number Pre, respectively, and can be expressed as

a = a1 + a2 Pnµ (16)

m = m1 Pr−se (17)

where the coefficients a1, a2 and m1 and the exponent s only depend on the cross-sectional
geometry. For engineering application, the appropriate forms of equations (14) to (17) for
circular and square cross-sections, valid for 5 ≤ Pre ≤ 100, 1 ≤ Pnµ ≤ 4 and 10−4 ≤ X∗ ≤ X∗max,
are reported in table 2. For Pre = 5, 20 and 100, the maximum positive and negative relative
errors in the approximation of Nuµ/Nuc by means of equation (14) are ε+max = 0.14% and
ε−max = −0.21% for circular ducts and ε+max = 0.31% and ε−max = −0.28% for square ducts.
Therefore, we can conclude that the agreement between computed and approximate results is
very good.
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Table 2. Correlations for Nuµ/Nuc corresponding to equations (14) to (17) for circular and
square cross-sections.

Cross-section Correlations for Nuµ/Nuc

circular

Nuµ

Nuc
= 1 +

[(
Nuµ
Nuc

)
fd
− 1

]{
1− exp

[
−a (X∗)m − 2.0 (X∗)0.6

]}
(

Nuµ
Nuc

)
fd

= 1 + 3.39 · 10−2 Pnµ − 9.2 · 10−4 Pn2
µ

a = 2.62 + 0.084 Pnµ

m = 0.48 Pr−0.076e

square

Nuµ

Nuc
= 1 +

[(
Nuµ
Nuc

)
fd
− 1

]{
1− exp

[
−a (X∗)m + 3.0 (X∗)0.8

]}
(

Nuµ
Nuc

)
fd

= 1 + 4.74 · 10−2 Pnµ − 1.0 · 10−3 Pn2
µ

a = 6.79 + 0.044 Pnµ

m = 0.57 Pr−0.050e

5.3. Correlations for the mean Nusselt number for flows of liquids with temperature dependent
thermal conductivity
The results obtained for the considered cross-sectional geometries for Pnµ = 0 and Pnk 6= 0 have
been used to obtain correlations for the ratio Nuk/Nuc as a function of X∗ in the form

Nuk

Nuc
= 1 + a Pnk +

(
b1 Pnk + b2 Pn2

k

)
X∗ (18)

where the coefficient a can be expressed as

a = a1 Prde {1− exp [−a2 (X∗)n]} (19)

In equations (18) and (19) the coefficients a1, a2, b1 and b2 and the exponent d only depend on
the cross-sectional geometry and on the sign of Pnk, while the exponent n also depends on the
Prandtl number Pre according to the relation

n = n1 Pr−se (20)

where the coefficient n1 and the exponent s only depend on the cross-sectional geometry. For
engineering application, the appropriate forms of equations (18) to (20) for circular and square
cross-sections, valid for 5 ≤ Pre ≤ 100, 0.0125 ≤ |Pnk| ≤ 0.4 and 10−4 ≤ X∗ ≤ X∗max, are
reported in table 3. For Pre = 5, 20 and 100, the maximum positive and negative relative
errors in the approximation of Nuk/Nuc by means of equation (18) are ε+max = 0.53% and
ε−max = −0.21% for circular ducts and ε+max = 0.30% and ε−max = −0.17% for square ducts.
Therefore, we can conclude that the agreement between computed and approximate results is
very good.
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Table 3. Correlations for Nuk/Nuc corresponding to equations (18) and (19) for different
cross-sections and signs of Pnk.

Cross-section Pnk Correlations for Nuk/Nuc

circular

> 0

Nuk

Nuc
= 1 + a Pnk +

(
1.97 Pnk − 0.238 Pn2

k

)
X∗

a = 0.032 Pr0.031e {1− exp [−28 (X∗)n]}
n = 0.60 Pr−0.024e

< 0

Nuk

Nuc
= 1 + a Pnk +

(
1.90 Pnk − 0.399 Pn2

k

)
X∗

a = 0.033 Pr0.035e {1− exp [−28 (X∗)n]}
n = 0.60 Pr−0.024e

square

> 0

Nuk

Nuc
= 1 + a Pnk +

(
1.98 Pnk − 0.295 Pn2

k

)
X∗

a = 0.052 Pr0.024e {1− exp [−18 (X∗)n]}
n = 0.60 Pr−0.037e

< 0

Nuk

Nuc
= 1 + a Pnk +

(
1.92 Pnk − 0.716 Pn2

k

)
X∗

a = 0.053 Pr0.034e {1− exp [−18 (X∗)n]}
n = 0.60 Pr−0.037e

5.4. Estimation of the mean Nusselt number for flows of liquids with temperature dependent
properties by means of the proposed correlations
The correlations proposed in the previous sections can be used to predict the value of Nuµk. In
fact, according to equation (11), we can write

Nuµk = Nuc
Nuµk

Nuc
∼= Nuc

(
Nuµk

Nuc

)′
= Nuc

(
Nuµ

Nuc
+

Nuk

Nuc
− 1

)
(21)

where Nuc, Nuµ/Nuc and Nuk/Nuc are given by equations (12), (14) and (18), respectively. The
maximum absolute values |ε|max of the relative error in the approximation of Nuµk by means
of equation (21) for Pre = 5, 20 and 100 and different values of Pnµ and Pnµ/Pnk are reported
in table 4 for circular and square cross-sectional geometries. As can be seen, the agreement
between computed and approximate results is very good.

6. Conclusions
New correlations, suitable for engineering applications, for the mean Nusselt number in the
entrance region of circular tubes and square ducts with uniform heat flux boundary conditions
specified at the walls have been proposed. These correlations have been obtained on the basis
of the results of a previous parametric investigation on the effects of temperature dependent
viscosity and thermal conductivity in simultaneously developing laminar flows of liquids in
straight ducts of constant cross-sections. In these studies, a finite element procedure has
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Table 4. Maximum absolute values |ε|max (%) of the relative error in the approximation of
Nuµk by means of equation (21) for simultaneously developing flows in circular and square ducts
with different viscosity and thermal conductivity Pearson numbers.

Cross-section Pnµ

Pnµ/Pnk

-10 -20 -40 -80 80 40 20 10

1 1.26 1.26 1.26 1.26 1.25 1.26 1.25 1.25

circular 2 1.25 1.23 1.23 1.22 1.22 1.22 1.21 1.21

4 1.29 1.23 1.20 1.19 1.17 1.16 1.15 1.11

1 1.67 1.67 1.67 1.67 1.67 1.66 1.66 1.66

square 2 1.59 1.60 1.61 1.61 1.61 1.61 1.61 1.62

4 1.45 1.40 1.43 1.44 1.46 1.47 1.57 1.76

been employed for the numerical solution of the parabolized momentum and energy equations.
Viscosity and thermal conductivity have been assumed to vary with temperature according
to an exponential and to a linear relation, respectively, while the other fluid properties are
held constant. The temperature dependences of viscosity and thermal conductivity have been
quantitatively expressed by the corresponding Pearson numbers. Axial distributions of the mean
Nusselt number, obtained by numerical integration from those of the local Nusselt number,
have been used as input data in the derivation of the proposed correlations. A superposition
method has been proved to be applicable in order to estimate the Nusselt number by considering
separately the effects of temperature dependent viscosity and thermal conductivity. Therefore,
for each of the considered cross-sectional geometries, two distinct correlations have been proposed
for flows of liquids with temperature dependent viscosity and with temperature dependent
thermal conductivity, in addition to that obtained for constant property flows.
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