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Abstract. The present work presents an alternate method for solving the poisson equation
for calculating the pressure field that appears in many discrete numerical solvers of the
incompressible Navier-Stokes equations. The methodology is based on a pressure-correction
scheme with a mixed approach that employs Integral Transform Technique for the calculation
of the pressure field from a given discrete velocity field. Two solution schemes are analyzed,
these being the single transformation and the double transformation. The poisson equation is
solved with the two different schemes using a prescribed source term to simulate the discrete
data that could arise in the solution process of the momentum equation and an numerical results
are presented. An error analysis of these results show that the single-transformation scheme is
computationally superior to the double transformation, and that good convergence rates can
be obtained with few terms in the series. Moreover, it was also verified that the series solution
employed for the Poisson equation maintains the original spatial order of the discretization.

1. Introduction

A major difficulty in the numerical simulation of incompressible flows is the fact that velocity
and pressure are coupled by the incompressibility constraint. To overcome this difficulty in
time-dependent viscous incompressible flows, fractional step methods, which are also referred as
projection methods, were developed. These methods can be classified into three classes [1],
namely pressure-correction methods, velocity-correction methods, and consistent splitting
methods. The most attractive feature of projection methods is that, at each time step, one
only needs to solve a sequence of decoupled elliptic equations for the velocity and the pressure,
making it very efficient for large-scale simulations. In spite of the advantages of projection
methods, the employed decomposition is intrinsically second-order accurate, hence limiting the
application of higher-order approximations.

Pressure-correction schemes are time-marching techniques composed of two sub-steps for each
time step: the pressure is treated explicitly or ignored in the first sub-step and is corrected in
the second one [2]. The most common methodology to obtain a pressure-correction equation
involves combining the momentum and continuity equations by taking the divergence of the
former and substituting the latter where necessary, effectively generating a Poisson-type equation
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for determining the pressure field from a given velocity distribution. Naturally, the correction
scheme is performed in an iterative fashion until mass conservation is satisfied at each time-
iteration. As a result, a major computational cost associated with pressure-correction methods
resides in the required sub-iterations per time step. At each sub-iteration, a Poisson equation
needs to be solved, which consumes large amounts of CPU time. To make matters worse, the
convergence rate of common iterative algorithms for this purpose, such as the Jacobi and Gauss-
Seidel, rapidly decreases as the mesh is refined [3]. However, this issue can generally be remedied
by employing Multigrid methods, which are designed to exploit the inherent differences of the
error behavior among meshes of different size [4].

In the realm of analytical methods, the Integral Transform Technique [5] has been used
for the solution of a variety of problems. The method deals with expansions of the sought
solution in terms of infinite orthogonal basis of eigenfunctions, keeping the solution process
always within a continuous domain. The resulting system is generally composed of a set of
uncoupled differential equations which can be solved analytically. A few works have implemented
a mixed approach using the Integral Transform Technique and other discrete schemes. Most
of these employ the Generalized version of the technique (GITT) [6], which can be used to
non-transformable problems in general, including those with non-linear effects. Cotta and
Gerk [7], employed the integral transform method in conjunction with second-order-accurate
explicit finite-differences schemes, to handle a class of parabolic-hyperbolic problems. Guedes
and Ozisik [8, 9] analyzed unsteady forced convection in laminar flow between parallel plates,
solving the problem with a hybrid scheme that combines the GITT with second-order finite
differences. More recently, Casteldes and Cotta. [10], employed a partial integral transformation
strategy in periodic convection in micro-channels and Naveira-Cotta et al. [11] used a similar
approach in a conjugate conduction-convection problem. In theses studies, one of the spatial
variables was handled automatically by a numerical PDE solver, while the other was handled
by integral transformation. Very recently, different from these previous studies, a new approach
was employed in [12], where integral transformation and upwind discretization techniques were
applied within a same spatial variable.

This work is focused on an alternative numerical scheme for solving the unsteady
incompressible Navier-Stokes equations with primitive variables in three dimensions. The
methodology is based on pressure-correction schemes using a mixed approach based on the
Integral Transform Technique. This work proposes the use of the Integral Transform Technique
to find the pressure dependence on the discrete velocity field analytically, which potentially
eliminates the need for a pressure-velocity decomposition. In this paper, the analysis of the
Integral Transform solution of the Poisson equation for pressure field with a given discrete
source term is analyzed.

2. Problem Formulation
The governing equations are the traditional form of the Navier-Stokes Equations for
incompressible flow:

1
(?;t)_,_v.vvz_pvp+yv2v—|—f, for €V and t>0, (1a)

V-v=0, for zeV, (1b)

in which equation (la) is the momentum conservation equation and equation (1b) is the mass
conservation equation, also called the incompressibility constraint.

The proposed methodology to solve the Navier-Stokes equations is based on the projection
methods for incompressible flows [1]. The first step of the methodology is to apply the divergence
operator on equation (la) and use the continuity equation (1b) to obtain a Poisson equation for
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determining the pressure field:
1 2 T
;Vp:V~f—V’U:(Vv) , for eV, (2)

where p is the fluid density, f is the body force vector (in acceleration units), v is the velocity
vector, p is the pressure and V is a general domain volume. With this procedure, the continuity
equations can be replaced by equation (2), which needs to be solved together with the momentum
equation (1). With the given formulation, one needs to specific pressure boundary conditions at
all boundaries. In this work, normal zero gradients for pressure at the boundaries will be used
for illustrational purposes:

(Vp-n)ay = 0, 3)

where JV is the boundary of the general domain volume.

2.1. Initial Value Problem Discretization

The next step of the methodology is the time discretization. There are many ways to
discretize the problem in time [13], such as methods like Forward Euler, Backward Euler, BDF
methods, among others. If a Forward Euler Method is employed, the time-discretized version of
equations (la) and (2) become:

1
= At <—Vpl + vVl — ol Vol + fl> + !, (4a)
p
loo g I ool N\t
V! =V - ff=Vov : (Vv ) | (4b)
p
where, in order to find the velocity v/*1, it is necessary to know the pressure field p'.

2.2. Poisson Equation Solution
For this work, the two dimensional case in cartesian coordinates will be considered. For these
assumptions, the equation (4b) is simplified to the following form:

20 (o 2p(x
. pég;’2y7t) + 72 (gyzy’ 2 = plh(z,y,1) = gy, )], o)

2 2
g(xayat) = <au> +2@@ + (al)) ) h($7y7t) = afx + % (5d)

in which:

Ox Oy Oz oy ox oy

The Classical Integral Transform Technique (CITT) [5] is then used for the purpose of solving
the Poisson equation (4b). Two approaches are used for this purpose: CITT transforming
in one direction (single transformation) and CITT transforming in two directions (double
transformation), as described next.
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3. CITT with Single Transformation

In order to establish the transformation pair, the pressure field is written as function of an
orthogonal eigenfunctions obtained from the following auxiliary eigenvalue problem known as
the Helmholtz classical problem, where X, (z) are the eigenfunctions and \,, are the eigenvalues.

d2 X, (z)

5+ A Xa() =0, X'(0) =0, X'(L) =0, (6)

which has the following solution:

Xo(z) = cos(xhn),  with  Ap= % for  n=0,1,23,... (7)
Now, the transformation pair can be defined:
L
Transformation = p,(y,t) = / p(z,y,t) X(x), dz, (8a)
0
o X ()P (y: )
Inversion = p(z,y,t) =po(y,t) + Z nTpny,’ (8b)
n=1 n
where the norms N,, are defined by:
L
N, = / X2dx (9)
0

which gives N,, = L/2 for n # 0 and N,, = L for n = 0.
The final solution is given by a decomposition of the pressure field in two parts: the average
pressure in the x direction payg, and the modified pressure ppoq:

p(I,y,t) :pavg(yat) +pmod(xay>t)7 (10)

in which pave comes from the solution of the eigenproblem when A = 0 and pp,q comes from
the solution when A # 0, in other words:

pavg(yu t) = pO;g(; t)7 pmod(xy Y, t) = Z W (11)

n=1

3.1. Solution for pmeq (A #0)
The integral transformation of the governing differential equation is derived by applying the

operator fOL(o) X, dz to equation (5), obtaining the following transformed Poisson equation:

%P (y,t _ _ )
P Xpulet) = (1) — 9 (0.) (120)

(W)Fo =0 (W)y:b[ =0, (12b)

where g, and h,, are the transformed versions of g and h:

L L
Gnlyst) = / o(,y, ) X da, (s 1) = / By, 1) X da, (13)
0 0
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and equation (12) admits a closed-form analytical solution:

Pn(y,
H pe_yAn
An

(hn(y,t) — Guly.t)) dy+

H peykn

(e +1) (coth (HA,) - 1)/0 s (Gn(6:0) = hn(y, D) dy+

e ¥An < % cosh (yA,) csch (HAy,) e(H+y)’\"/
0

1

4

1 Y pe¥'n - _
/0 P (Gn(¥/ 1) — ha(y/, 1)) dy'+

2 )y
1 Y pe~Y A _ =
Lo /0 E— (R, t) = Guly/1)) dy') (14)

To find the actual solution for modified pressure pmo4, the inversion formula is used, equation
(11). By observing equations (13), one notices integrals of the discrete variables u, v, f, and f,.
In order to compute these integrals, the following integral separation is proposed:

Tmax

/Auvfx,fyda:—Z/ A(u, v, fy, fy) dz (15)

where A is a general function of u, v, f, and f,. Then, to compute the integrals analytically, a
Taylor expansion is used to expand the variables u, v, f, and f, in each subdomain:

3.2. Solution for payy (A =0)
In order to obtain the transformed differential equation for A = 0, a similar process is done,
leading to the following the transformed equation:

*po(y, t . B
BL) — pho(u.1) ~ o300, (162)
ay y=0 ay y=H
where:
L - L
Goly. ) = / ooy, )de  and  holy,t) = / Wz, y.t) de. (17)
0 0

The equation (16) admits a general analytical solution in the following form:

/ / (ho(y/',t) — go(y', 1)) dy' dy” + cry + co. (18)

By applying the boundary conditions, one arrives to the following equations:

H —
el =0, 0= /O o (Roly. ) — Goly, 1)) dy + c1, (19)

such that ¢; must be zero and the integral also must be zero:

H
/0 p (ho(y,t) — go(y,t)) dy = 0. (20)
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One can easily prove that the integral above indeed equals zero due to the momentum
conservation law. With this information at hand, the solution of the transformed differential
equation is achieved:

/ / —go(y',t) + ho(y',t)) dy' dy” (21)

Then, the same integral separation (equation (15)) and Taylor series expansions are used to
derive analytically the coefficients hg and go:

3.3. Discrete Derivatives

In order to solve the pressure problem, the discrete derivatives of u, v, f, and f, must be
calculated. In this work, a second order central differencing scheme is used inside the domain
and second-order the backward/forward (depending of the boundary) differencing scheme is used
at the boundaries.

4. CITT with Double Transformation

In a similar manner as done for the single transformation scheme, one needs to establish the
transformation pair. In order to obtain that for this approach, two eigenvalue problems are
defined. The eigenvalue problem associated with the x direction is the same as given by
equations (6), whereas the problem associated with the y direction is given by:

d2Yn(y)

dy2 + ngyn(y) =0, Y/(O) =0, Y/(H) =0, (22)

which has the following solution:
Yo (x) = cos (yfBm) , with Bm = —— for m=1,2,3,..., (23)

and the transformation pair can then be defined as:

Transformation = Py (t) = / / p(x,y,t) X ()Y (x),, dzdy, (24)
_n XTL Ym
Inversion = p(z,y,t) = nz%mzjo b an(lfT; (y)’ (25)

where the norms Nx,, and Ny, are defined by:
L H
Nx,, = / X2dz and Ny,, = / Y2 dy (26)
0 0

Applying the operator fo fo ¢) X, Y, drdy to the Poisson equation, the following
transformed Poisson equation is obtalned.

_()‘721 + Bgm)ﬁn,m(t) =P (Zn,m(t) - §n,m(t)) : (27)

This equation is a simple uncoupled algebraic systems where gy, ,, and f:an are written as:

H L _ H L
gn,m(t):/ / g(z,y,t) X Yo dzdy, hn,m(t):/ / h(z,y,t) X, Yo dedy, (28)
0 0 0 0
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and has a direct solution given by:

= :n,m t) — ?Ln,m t
Funtt) = 22l Fanl®),

(29)

such that the final solution is obtained by using the inversion formula, eq. (25).

The greatest advantage of this approach is that it requires a lot less analytical effort and
the final solution is simpler and more compact. But the final solution has a double summation
that can increase computational cost. In order to minimize this cost, one can use a reordering
scheme, switching from the double summation to a single one. This is done by associating pairs
(n,m) with a single index k in by organizing pairs that promote lower values of (A2 + 32,) in
ascending order. With the reordering scheme one arrives at the following expression for the
pressure distribution:

_— ipﬁn k),m(k (t) = ey, (k)(t) X)) () Yoy (v) (30)
s K T B Xn(k) NYim(k)

5. Results

The results presented in this paper are intended to evaluate the feasibility of using a CITT
poisson solver with the discrete source terms that appear in algorithms that use pressure-based
projection methods, comparing both single and double transformation schemes. For all cases
herein presented L =1, H =1, p =1 and u = 1 were used and the source term of the Poisson
equation (5) was assumed to be of the following form:

| e Y e (31)

i7j

which was chosen in this form to ensure that relation (20) is satisfied.

A comparison of computational cost is done for the two transformation schemes presented
in this work. In order to compare the CITT performance, a fixed mesh is used and different
truncation orders for the summations are computed, so only the CITT error is captured. The
CITT error is calculated using the following formula:

(,JJITT (Mmax) = abs[p; j (Nmax) — Pi,j (Mmax + 5)] (32)

Figure 1 presents a comparison of the error versus CPU time for single and double
transformation strategies. As can be seen, the single transformation has better performance
results, running the code in less CPU time and generating smaller errors. In other words, the
final performance of the CITT single transformation overcomes the bigger effort in the analytical
manipulation, which suggests that this is a better approach.

Once the single transformation scheme was shown to have better performance, from now on,
the results for the solution of the Poisson equation for the pressure field is carried-out only using
the single transformation scheme. With these results, the convergence will be analyzed and
discussed. In order to analyze the convergence of the single transformation scheme, an absolute
error in the z direction is defined as:

€; j(imax) = abs[p; j(imax, 1024) — p; j(2imax, 1024)], (33)

in which e is calculated at the mesh point (7, j) and for a mesh size (imax, 1024). Similarly, for
the y direction:

sz (jmax) = abs[pi,j(1024ajmax) - pi,j(1024a 2jmax)]a (34)
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Mesh of imax=128 and jmax=128
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Figure 1. Comparison of the computational cost of CITT using single transformation and
CITT using double transformation for a mesh i, = 128 and jnax = 128.

where € is calculated at the mesh point (7, j) and for a mesh size (1024, jmax). For the calculation
of the error in the z-direction, a refined mesh of 1024 divisions in y-direction was used in order to
isolate the x error and minimize the effects of the y convergence. The same 1024 mesh divisions
in y was used for the error in the z-direction. All meshes utilized in this work have divisions of
the form 2*, thus, one could take maximum advantage of parallel computing.

A great amount of data was generated with the proposed algorithm, and an analysis showed
that the error distribution is almost insensitive to the variation of ny,x showing that CITT has
a very good convergence rate. Hence, for simplicity, the presented results show data for a fixed
Nmax = 10. Figure 2 shows the distribution of the absolute error €7 ; (64) while figure 3 shows
the distribution e?{’ j(64) . As can be seen from the former, the error oscillates in the z-direction.

0.000015%
0.00001
5x1070

0.0

Figure 2. Absolute error variation inside the domain for . = 10, Az = 27% and Ay = 2719,

This effect is explained by the nature of the Integral Transform Technique, since it is based
on oscillatory eigenfunctions and the equation was transformed in the z-direction. Another
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point to be highlighted is that the eigenfunctions satisfy the boundary conditions. As a result,
the error is zero at © = 0 and * = 1. The error behavior does not change with the variation
Az, the only notable change being the magnitude of the results, that naturally, decays as Az is
decreased. Figure 3 also displays the error behavior for the mesh in the y-direction, showing that
it increases along with the y-coordinate. This phenomenon is due to the exponential feature of

yd (TR
% et
e .'"'.'.".'.'I": ‘,f'éi‘ ——
s et
/ AT TS A T AT TR
/ b
. O e N AR A NN S N
e R e S e S W W o SN Ny SN
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S R AL |

O St s
vy ,,,".":.'»'::Z"

0.00005
L
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05 LIl
LS "...~
.'.'.

Figure 3. Absolute error variation inside the domain for . = 10, Az = 2710 and Ay = 276,

the ODE solution obtained after the transformation of the problem. This exponential behavior
of the solution magnifies the error while y increases. Similar observations to those pointed out
in figure 2, in respect to Ax, can be done here about the variation of Ay.

In order to illustrate the convergence of the solution with the variation of Az, figure 4 shows
a plot of the maximum absolute error with the variation of the mesh size Azxz. As one can
observe, the convergence order is about 2, which was expected since all approximation made in
the mathematical formulation were of this order. Figure 5 shows the convergence of the absolute
error with Ay. Although the solution seems to have a higher order for the poorer refined meshes,
the order stabilizes at 2 when more refined meshes are implemented.
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5%107F

2x1074+
1x107*

5%1073
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0010 0015 0020 0030 0.050

Figure 4. Maximum absolute error vs. Az for Ay = 2710,
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Figure 5. Maximum absolute error vs. Ay for Az = 2710,

6. Summary and Conclusions

The main goal of the proposed work was the development of a new methodology using the
Integral Transform Technique in a semi-analytical fashion for the Poisson equation, allowing an
explicit expression for the pressure p, that then can be input in the momentum equations and
thus be solved using a numerical technique for initial value problem. The solution of the Poisson
equation using this semi-analytical approach was accomplished in this work using two different
schemes: CITT single transformation and CITT double transformation. The comparison
between both schemes showed that the double transformation has poorer performance in
comparison with the single transformation scheme. The error convergence rate was shown and
it was possible to see that the spatial approximation order matched the expected value of 2 in
both z and y directions. It was also observed that the Integral Transform Technique had a very
good performance, converging with very few terms in the series.
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