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Abstract. The Darcy-Graetz problem for a channel filled by a nanofluid saturated porous
medium is studied. The flow is assumed to be fully developed and described through Brinkman’s
model. For the model of the nanofluid, both thermophoresis and Brownian diffusion are taken
into account. After an adiabatic preparation region, a boundary temperature linearly varying
with the longitudinal coordinate is prescribed. A study of the thermal behaviour of the nanofluid
is performed by solving numerically the fully—elliptic coupled equations, with reference both to
the thermal entrance region and to the fully developed region. With reference to the fully
developed region the solution has been obtained analytically, while for the thermal entrance
region it has been obtained numerically, by a Galerkin finite element method implemented
through the software package Comsol Multiphysics ((© Comsol, Inc.). The analysis shows
that, for physically interesting values of the Péclet number, the concentration field depends
very weakly on the temperature distribution, for any given value assumed by the Darcy
number. Indeed, since the effects of thermophoresis and Brownian diffusion are negligible,
the homogeneous model could be employed effectively.

1. Introduction

As is well known, a nanofluid, i.e. a suspension of nanoparticles in a base fluid, is an innovative
technique that uses ultra fine solid particles in the fluid to improve the heat transfer occurring in
industrial and technology applications like power manifacturing, transportation, electronics, etc
[1-4]. A comprehensive survey of convective transport in nanofluids was made by Buongiorno
[5] and Kakag and Pramuanjaroenkij [6].

Recently, the topic of heat transfer in nanofluids has been deeply investigated [7-15]. Two
different approaches can be distinguished in order to model the nanofluid behaviour: one may
consider the distribution of the nanoparticles in the base fluid as homogeneous or may consider
the distribution of nanoparticles in the base fluid as non-homogeneous. These two different
approaches lead to different sets of governing equations: the homogeneous model is totally
equivalent to the model employed for clear fluids except for a suitable rescaling of the governing
parameters due to the presence of nanoparticles inside the base fluid [11]. Among all possible
homogeneous models, an example is that defined by Tiwari and Das [12]. A non-homogeneous
model, on the other hand, adds one or more equations to the set of governing equations in
order to describe the nanoparticle distribution and/or the nanoparticle velocity. Among the
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possible non-homogeneous models, the most widely employed is the model by Buongiorno [5], a
model suitable for the heat transfer analysis and for the investigation of the nonhomogeneous
distributions of nanoparticles. In this paper, the set of local balance equations appropriate for
the study of the flow of nanofluids is presented, with an emphasis on the physical effects peculiar
for nanofluids: thermophoresis and Brownian diffusion.

According to the author’s knowledge, despite the growing amount of studies dealing with
nanofluid saturated porous media, very few papers analyze the forced convection. In particular,
the problem is treated by means of Buongiorno’s model by Nield and Kuznetsov [14], and by
means of the alternative approach of considering the porous medium as composed by an array
of microchannels by Hung [15].

The Graetz-like problems, namely the problems dealing with the thermal entrance region in a
channel or a duct, have been widely investigated. The aim of the present contribution is to extend
the analysis presented in [13] for a clear nanofluid to the special case of a nanofluid saturating a
porous medium.

In the present contribution, we aim to investigate the steady laminar forced convection in a
parallel-plane channel, filledy by a nanofluid saturated porous medium.

2. Mathematical model

We consider a channel bounded by two impermeable plates having distance 2L, and infinite
longitudinal length. Due to the symmetry, the problem is two-dimensional: let T be the
longitudinal coordinate, while 7 is the transverse one. The flow is assumed to be fully developed,
according to Brinkman law. We refer to the nanofluid model introduced by Buongiorno [5].
The thermal entrance region is studied assuming an adiabatic preparation of the duct [13]
upstream of the thermal entrance region, where a boundary temperature varying with the
longitudinal coordinate is prescribed. For the nanoparticle concentration, an inlet condition given
by a uniform distribution is assumed while the boundary walls are considered as impermeable.
Downstream of the adiabatic preparation region, a boundary temperature given by a linear
function of the longitudinal coordinate is prescribed. The aim of this paper is to solve the fully
elliptic coupled equations, for the temperature and concentration fields. First, the temperature
and concentration fields are determined analytically. Then, the numerical solution for the
thermal entrance region is obtained by a Galerkin finite element method implemented through
the software package Comsol Multiphysics.

In the hydrodynamically developed region, the assumptions imply that the velocity is parallel to
the axial direction , namely

U—ALU cosh(AL) — cosh(Ay)

WAL - cothifg) o
cosh(AL) — sinh(AL)

where U, is the man value of the velocity distribution and

with K permeability of the porous medium, p viscosity and u' effective viscosity of the porous
medium. By invoking that local thermal equilibrium holds, the diffusion equation for the
nanoparticles and the local energy balance equation for the fluid are given by

96 —- vT
Ugi — VT 47 (DBVQB VT + DTW> , (4)
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In Egs. (3) and (4) € is the porosity of the porous medium, ¢ is the nanoparticle concentration, T

is the temperature, Dp and D7 are the Brownian diffusion and the thermophoresis coefficients,

defined as
kgT;

= D =
37T,U,dp7 T BV¢07 (6)

B
and [ is a proportionality factor defined by McNab and Meisen [16].
The thermal boundary conditions can be described as follows: at the inlet section the fluid
temperature is uniform and denoted as 7T;; then, after an adiabatic preparation, the wall
temperature assumes the value 7;, at * = 0 and starts changing linearly in the longitudinal
direction, namely

T(z,%L) =T, + (T, ~ T)) 7. (7)

Let us introduce the following dimensionless quantities:

T 7 U T Dg ¢
x L’ Yy I’ U U'm ) TZL ) BT DT ;
Qm Uog L d)O(QC)np Tw <
Le=——, Pe=— , G="—"1—"+F =— , A=AL |, 8

where Le is the Lewis number and A is Darcy number. As is well known, Darcy number usually
assumes very small values compared with unity in highly porous media. According to the bridging
role of Brinkman model, the limit A — 0 yields to Darcy law, while the limit A — oo yields
to the clear fluid behavior, thus allowing a qualitative comparison with the results presented in
[13].
Moreover, let us rescale the volumetric fraction of nanoparticle with respect to the inlet value,
ie.

¢p=—. (9)

By employing the dimensionless quantities, Egs. (1), (3) and (4) can be rewritten as

Oﬂ‘%\z

B Acosh(A) — cosh(Ay)

v A cosh(A) — sinh(A)’ (10)
ugi B LelPe [VQ¢+ lesT <V;T a VTI;QVT)] ’ (11)
“?93;: VPZZ+L6GP6 <V¢'VT+J\;TVT1'ﬁVT>’ 12
to be solved together with the dimensionless boundary conditions,
T(x,x£1) =v+z(y—1). (13)

In order to evaluate the order of magnitude of the dimensionless parameters, we refer to typical
values of the thermophysical properties for water and copper flowing in a porous medium with
porosity 0.5. Of course, the parametric analysis allows a different choice of the values. One may
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now choose the typical size of the nanoparticle d, ~ 10~m and an inlet volumetric fraction of
the nanoparticle ¢g ~ 1072. According to this choice, the values of N7, Le and G become

Npr =046 , Le=17-10* , G=8.61-1073. (14)

Eq. (14) shows that the fraction G/Le that appears in Eq. (12) is of order of magnitude 1077,
and this justifies neglecting the last term on the right hand side of Eq. (12). Equation (12) thus
becomes
or VAT

Yor T Pe
Eq. (15), together with the boundary conditions, shows that the dimensionless temperature
depends only on the parameters Pe and A and on the boundary condition, i.e. Eq. (13), and
namely on the parameter 7. On the contrary, Eq. (11) shows that the distribution of the
volumetric fraction of the nanoparticles is influenced by the temperature field as well.
One can introduce the following dimensionless temperature,

(15)

T-T, T-1

Tw - E Y= 1 ( )
By employing Eq. (16), Eq. (15) becomes
or VT
il . 17
Y or Pe (17)
to be solved together with the inlet condition, T = 0 , and with the boundary conditions,
T
8—:0, for x <0, y = =+1;
dy
T=14z for >0, y=+1. (18)

Egs. (17) and (18) show that the dimensionless temperature T does not depend on the parameter
7.

2.1. Fully developed region

Let us first investigate the region far from the entrance region, where the solution of Eq. (15),
together with the boundary conditions (13), can be obtained analytically. The analytical solution
obtained for the fully developed region will be employed to determine the dimensionless functions
to be prescribed on the outlet section, in order to investigate the thermal entrance region.

One may assume that, far from the entrance region, the dimensionless temperature distribution
is given by the sum of a linear function of the longitudinal coordinate and a function of the
transverse coordinate, namely

T(z,y) =7 +z(y=1) +6(y). (19)
By substituting Eq. (19) into Eq. (15), and by employing Eq. (10), one has

d?e cosh(A) — cosh(A y)

— = (y—1)PeA
dy? (y=1)Pe A cosh(A) — sinh(A)’

(20)

to be solved together with the boundary condition ©(y) = 0 for y = 1. Indeed, one obtains

(y = 1)Pe [2+ A% (y* — 1)] cosh(A) — 2 cosh(Ay)
2A A cosh(A) — sinh(A)

O(y) = (21)
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With reference to the concentration, in the fully developed region, the temperature gradient in
the longitudinal direction remains constant while the dimensionless temperature increases with
the longitudinal coordinate, thus allowing us to infer that the last terms on the righthand side of
Eq. (11) can be dropped. Indeed, far from the thermal entrance region, the governing equation
for the concentration becomes

0¢ V2¢
- — ) 22
“or = LePe (22)
Similarly, one can infer that the boundary condition for the nanoparticle concentration becomes
0
99 =0. (23)
8y y==+1

Indeed, one may assume that, far from the entrance region, the nanoparticle concentration
distribution is given by the sum of a linear function of the longitudinal coordinate and a function
of the transverse coordinate, namely

¢z, y) = Az + (y). (24)
By substituting Eq. (24) into Eq. (22), one has

cosh(A) —cosh(Ay)  d?®
A cosh(A) —sinh(A) — dy?’

LePe AA (25)

to be solved together with the boundary condition (23). By integrating Eq.(25) with respect to
y in the interval [—1, 1], and by employing Eq.(23), one obtains

A=0, & =const. (26)

Equations (21), (24) and (26) yield the dimensionless temperature and concentration
distributions to be prescribed on the outlet section in the numerical solution for the thermal
entrance region.

2.2. Thermal entrance region

The governing equations (11) and (15), together with the dimensionless boundary conditions
(13) and (23), have been numerically solved by employing Galerkin’s finite element method,
implemented through the software package Comsol Multiphysics. The numerical simulations
have been performed by considering a half-channel, i.e. 0 < y < 1, and by replacing the

boundary conditions in y = —1 with the symmetry conditions in y = 0, namely
or o
or _ 9% _ (27)
dy Oy

The numerical simulations have been performed by taking into account Eq. (14) and for different
values assumed by the parameters Pe, v and A. In particular, the values Pe = 0.1 and Pe = 0.01,
v = 1.01 and v = 1.001 ;, A = 0.1 and A = 10 have been considered. If reference is made to
copper particles suspended in water flowing in a channel with L = 1mm, then Pe = 0.01
corresponds to a mean velocity proportional to 1 mm/s. Moreover, on account of the definition
of the dimensionless parameters, the value v = 1.01 corresponds, if an inlet temperature of 300
K is assumed, to a boundary temperature of 303 K prescribed at the thermal entrance section,
2 = 0, and then to a boundary temperature increase of 10 K per millimeter of axial length of
the channel.

First, the solution has been checked to be independent of the dimensionless length of the
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Figure 1. Difference between the dimensionless temperature and the boundary temperature
distribution in a half channel for A = 0.1 and Pe = 0.01, evaluated at three different axial
positions: x = 0.5 (a), z =2 (b) and x =5 (¢).

computational domain, as well as of the mesh employed. First, different lengths of the thermal
entrance region have been compared in the range 10 < z,,; < 40, where x4, denotes the
dimensionless axial position of the outlet section. In order to perform this comparison, an
unstructured mesh of triangular elements has been generated by fixing the maximum element
size m.e.s. = 0.05. According to this choice, one has, for instance, a mesh consisting of 20100
elements when z,,; = 10; obviously, for increasing lengths of the computational domain, the
number of elements increases. Both the cases Pe = 0.1 and Pe = 0.01 have been tested,
assuming A = 0.1. Then, in order to test the independence from the maximum element size,
reference has been made to v = 1.01 and to the computational domain —10 < z < 10, where
x = 0 corresponds to the thermal entrance section and x = —10 corresponds to the inlet section.
The value A = 0.1 has been considered, and both the cases Pe = 0.1 and Pe = 0.01 have
been tested, and different values of the maximum element size have been prescribed, in order
to obtain different unstructured meshes characterized by a uniform distribution of triangular
elements. The numerical solution has been proved to be independent of the mesh, especially
with reference to the axial positions far from the thermal entrance region.

3. Discussion of the results

In this section, the main features of the numerical solution for the thermal entrance region will
be discussed. In the present analysis, as explained in the previous section, the values of the
parameters given by Eq. (14) have been assumed and a dimensionless axial position of the outlet
section x,,; = 10 has been used to define the computational domain. Moreover, an unstructured
mesh of triangular elements with maximum element size 0.04 is employed. With reference to
the parameters Pe, «, and A different values have been taken into account in order to better
investigate the features of the mathematical model.

In Figs. 1 and 2 the difference between the dimensionless temperature distribution 7" and its value
at the boundary is reported, in the thermal entrance region, versus the transverse coordinate y
for three different axial positions z and for Pe = 0.01. Fig. 1 refers to A = 0.1, while Fig. 2
refers to A = 10. The figures show that far from the thermal entrance region, the temperature
distribution tends to become independent of the transverse coordinate y and that this behaviour
is reached very soon. Moreover, a comparison between the two figures shows that the solution is
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Figure 2. Difference between the dimensionless temperature and the boundary temperature
distribution in a half channel for A = 10 and Pe = 0.01, evaluated at three different axial
positions: x = 0.5 (a), z =2 (b) and z =5 (¢).
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Figure 3. Nanoparticle concentration distribution in a half channel for Pe = 0.01 and v = 1.01,
evaluated at three different axial positions: = = 0.5 (a), z =2 (b) and x = 5 (¢). The solid lines
refer to A = 10, while the dashed ones refer to A = 0.1.

not appreciably affected by the velocity distribution, i.e. by the parameter A. To underline this
feature the unphysical value A = 10 has been assumed in Fig. 2.

In Figs. 3 and 4 the volumetric nanoparticle concentration is reported versus the transverse
coordinate y for different axial positions x and for Pe = 0.01. Figure 3 refers to v = 1.01, while
Figure 4 refers to v = 1.001. The figures show that the volumetric concentration of nanoparticle
varies with the transverse coordinate only in a narrow region close to the boundary of the channel.
Moreover, the variability becomes smaller for increasing values of the parameter A. However, if
one looks at the range of values of the variability of ¢, one discovers that this range is, indeed,
extremely small. The results presented show that the volumetric concentration of nanoparticle
is not much affected by the velocity distribution, since it depende very weakly on the parameter
A, and is not much affected by the temperature distribution, since it depends very weakly on
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Figure 4. Nanoparticle concentration distribution in a half channel for Pe = 0.01 and v = 1.001,

evaluated at three different axial positions: z = 0.5 (a), z =2 (b) and x = 5 (¢). The solid lines
refer to A = 10, while the dashed ones refer to A = 0.1.
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Figure 5. Nanoparticle concentration distribution in a half channel for Pe = 0.1 and v = 1.01,
evaluated at three different axial positions: z = 0.5 (a), z =2 (b) and x = 5 (¢). The solid lines
refer to A = 10, while the dashed ones refer to A = 0.1.

the parameters v and Pe. Moreover, as discussed at the beginning of this section, the value
v = 1.01 (Fig. 3) is a barely interesting case, since it implies that, if an inlet temperature of
300 K is assumed, the boundary temperature increases 10 K per millimeter along the channel.
But the range of values of the variability of ¢ is even smaller for v = 1.001, as shown in Fig. 3.
In Figs. 3 and 4, the dashed lines refer to the limit of a clear nanofluid, and the results repeat
that presented in [13|. Only a qualitative comparison with the results regarding the clear fluid
and presented in [13] can be done, since the definition of the dimensionless parameters slightly
differs.

Finally, it should be pointed out that Figs. 3 and 4 refer to Pe = 0.01. For higher values
of the Péclet number the distribution of the nanoparticle concentration depends more on the
dimensionless temperature field, but always within a negligicle range of variability. For instance,
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results of the nanoparticle concentration referring to Pe = 0.1 are reported in Fig. 5, and higher
values of Pe are less interesting under a physical point of view.

To sum up, the resolution of the fully-elliptic coupled equations, which arise from the model
proposed by Buongiorno [5], requires a computational effort and yields to the determination of a
field, the nanoparticle concentration distribution, which may be considered as uniform in many
cases of practical interest. Recently, many authors have proposed to consider the nanofluid
not through the complete model, but as a normal fluid with properly defined thermophysical
properties, i.e. the so-called homogeneous nanofluid model (see, for instance, [11] and [12]). The
results arising from the present paper suggest to neglect the nanoparticle concentration gradient,
and to consider the nanofluid saturating the porous medium as a "normal fluid", since the
peculiar effects introduced in the model by Buongiorno [5] do not affect sensibly the numerical
solution.

4. Conclusions

In the present paper, the steady laminar forced convection in a parallel-plane channel involving
a nanofluid saturating a porous medium is studied. The flow is assumed to be fully developed,
and described through the Brinkman’s model. Downstream of an adiabatic preparation of the
channel, a boundary temperature given by a linear function of the longitudinal coordinate is
prescribed. A study of the thermal behaviour of the nanofluid is performed by solving numerically
the fully elliptic governing equations. More precisely, the mathematical model proposed by
Buongiorno [5] is employed, in order to evaluate the effects of thermophoresis and Brownian
diffusion. In particular, the model yields to a pair of partial differential equations: one for the
temperature field and one for the nanoparticle concentration distribution. The solution for the
fully developed region is determined analytically, while the solution for the thermal entrance
region is evaluated numerically by a Galerkin finite element method implemented through the
software package Comsol Multiphysics ((€) Comsol, Inc.). The numerical solution is fairly
independent of the dimensionless length of the channel, as well as of the mesh refinement.

The present analysis leads to the conclusion that thermophoresis and Brownian diffusion display
negligible effects in realistic cases. In fact, the volumetric concentration of nanoparticle is a weak
function of the temperature distribution, since it depends very weakly on the parameters v and
Pe. Moreover, both dimensionless temperature and nanoparticle concentration are weak function
of the velocity distribution, since they depend very weakly on the parameter A as well. Indeed,
the resolution of the fully-elliptic coupled equations, which arise from the model proposed by
Buongiorno, requires a computational effort and yields to the determination of the nanoparticle
concentration gradient, that may be neglected in many cases of practical interest.

A foreseen future development of the present analysis is to consider different boundary conditions,
such as periodic boundary condition, since for the case of clear fluid the effect of Brownian
diffusion and thermophoresis is not negligible for that boundary conditions.
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