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Abstract. We use one of the simplest forms of the K-essence theory and we apply it to
the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid
(p = γρ) modeling the usual matter content and include the particular form of potential
V(φ) = constant = 2Λ. The classical solutions for any γ �= 1 and Λ = 0 are found in closed
form, using a time transformation. We also present the solution when Λ �= 0 including particular
values in the barotropic parameter. We present the possible isotropization of the cosmological
model Bianchi I using the ratio between the anisotropic parameters and the volume of the
universe and show that this tend to a constant or to zero for different cases.
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1. Introduction
In recent times, some attempts to unify the description of dark matter, dark energy and inflation,
by means of a scalar field with non standard kinetic term have been conducted [1, 2, 3, 4]. The
K-essence theory is based on the idea of a dynamical attractor solution which causes it to
act as a cosmological constant only at the onset of matter domination. Consequently, K-essence
overtakes the matter density and induces cosmic acceleration at about the present epoch. Usually
K-essence models are restricted to the lagrangian density of the form [2, 5, 6, 7]

S =

∫
d4x

√−g [f(φ)G(X)−V(φ)] , (1)

where the canonical kinetic energy is given by G(X) = X = −1
2∇μφ∇μφ. K-essence was originally

proposed as a model for inflation, and then as a model for dark energy, along with explorations
of unifying dark energy and dark matter [5, 8, 9]. Another motivations to consider this type of
lagrangian originates from string theory [10].

In this framework, gravitational and matter variables have been reduced to a finite number
of degrees of freedom. For homogenous cosmological models the metric depends only on time
and gives a model with a finite dimensional configuration space, called minisuperspace. In this
work, we use this formulation to obtain classical solutions to the anisotropic Bianchi type I
cosmological model with a perfect fluid. This class of models were considered initially in this
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formalism by Chimento and Forte [11]. The first step is to write the theory for the Bianchi type
I model in the usual manner, that is, we calculate the corresponding energy-momentum tensor
to the scalar field and give the equivalent Lagrangian density. Next, by means of a Legendre
transformation, we proceed to obtain the canonical Lagrangian Lcan, from which the classical
Hamiltonian H can be found.

This work is arranged as follows. In section 2 we obtain the corresponding K-essence field
equations and in simple way we applied to Cosmological Bianchi Class A models. In section
3 we construct the lagrangian and hamiltonian densities for the anisotropic Bianchi type I
cosmological model. In section 4 we present some ideas in as the anisotropic cosmological model
can obtain its isotropization via the mean volume function and next we obtain the classical
exact solution for all values in the gamma parameter. Finally, section 5 is devoted to some final
remarks.

2. K-essence field equation
One of the simplest K-essence models, without self interaction has the following lagrangian
density

Lgeo = R+ f(φ)G(X), (2)

R is the scalar curvature, and f(φ) is an arbitrary function of the scalar field. From the
Lagrangian (2) we can build the complete action

I =

∫
Σ

√−g(Lgeo + LΛ + Lmat)d
4x, (3)

where Lmat is the matter Lagrangian, LΛ = 2Λ is the cosmological constant lagrangian, and g
is the determinant of the metric tensor. The field equations for this theory are

Gαβ + Λgαβ + f(φ) [GXφ,αφ,β + Ggαβ ] = −Tαβ , (4)

f(φ)
[
GXφ

,β
;β + GXXX;βφ

,β
]
+

df

dφ
[G − 2XGX] = 0, (5)

where we work in units with 8πG = 1 and, as usual, the semicolon means a covariant derivative
and a subscripted X denotes differentiation with respect to X.

The same set of equations(4,5) is obtained if we consider the scalar field X(φ) as part of the
matter content, i.e. say LX,φ = f(φ)G(X) with the corresponding energy-momentum tensor

Tαβ = f(φ) [GXφ,αφ,β + G(X)gαβ ] . (6)

Considering the energy-momentum tensor of a barotropic perfect fluid, Tαβ = (ρ+P)uαuβ +
Pgαβ , with uα the four-velocity, which satisfy the relation uμu

μ = −1, ρ the energy density and
P the pressure of the fluid. For simplicity we consider a comoving perfect fluid. The pressure,
the energy density and the four-velocity corresponding to the energy-momentum tensor of the
field X, become

P(X) = f(φ)G, ρ(X) = f(φ) [2XGX − G] , uμ =
∇uφ√
2X

, (7)

thus, the barotropic parameter is

ωX =
G

2XGX − G . (8)

and we notice that the case of a constant barotropic index ωX , (with the exception ωX = 0) can
be obtained by the G function

G = X
1+ωX
2ωX . (9)
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We have the following states in the evolution of our universe in this formalism,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

stiff matter : ωX = 1, → G(X) = X.
Radiation: ωX = 1

3 , → G(X) = X2.
inflation like: ωX = −1

3 , → G(X) = 1
X .

ωX = −2
3 , → G(X) = 1

4√
X
.

(10)

In reference [4], the authors present the analysis to radiation era using dynamical systems
obtaining bouncing solutions.

2.1. Anisotropic cosmological Bianchi Class A models, f(φ)=constant
Considering the cosmological anisotropic Bianchi Class A models with metric (20), the equation
(5) in term of X, becomes (here and all where appear the ′ means, ′ = d

dτ = d
Ndt , with t the

usual cosmic time)
[GX + 2XGXX] X

′ + 6Ω′XGX = 0, (11)

where the scalar function Ω in some sense parametrize the mean scale factor of a isotropic
universe, with its corresponding solution

XG2
X = ηe−6Ω. (12)

with η a constant.
Note that equation (12) give us the possible solutions X(A), as a function of the scale factor

and therefore the behavior of all physical properties of the k-essence (like ρ, P) , are completely
determined by the function X and do not depend on the evolution of the other types of energy
density.

2.2. quintessence like case: G = X and f(φ) �= constant
The field equations for this particular case are

Gαβ + Λgαβ + f(φ)

(
φ,αφ,β − 1

2
gαβφ,γφ

,γ
)

= −Tαβ , (13)

2f(φ)φ,α
;α +

df

dφ
φ,γφ

,γ = 0, (14)

and the energy-momentum tensor (6) has the following form,

Tαβ = f(φ)

(
φ,αφ,β − 1

2
gαβφ,γφ

,γ
)
. (15)

In this new line of reasoning, the action (3) can be rewritten as a geometrical part and matter
content (usual matter plus a term that corresponds to the exotic scalar field component of the
K-essence theory). The equation of motion for the field φ (14) has the following property, using
the metric of the Bianchi type I model (however, this is satisfied by all cosmological Bianchi
Class A models),

3Ω′φ′f + φ′′f +
1

2

df

dφ
φ′2 = 0, (16)

which can be integrated at once with the following result,

1

2
f(φ)φ′2 = ηe−6Ω, →

∫ √
f(φ)dφ =

√
2η

∫
e−3Ω(τ)dτ. (17)
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here η is an integration constant and has the same sign as f(φ). Considering the particular form
of f(φ) = ωφm or f(φ) = ωemφ with m and ω constants, the classical solutions for the field φ in
quadrature are

φ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
(m + 2)

√
η
2ω

∫
e−3Ωdτ

] 2
m+2

, f(φ) = ωφm, m �= −2

Exp

{√
2η
ω

∫
e−3Ωdτ

}
, f(φ) = ωφ−2, m = −2

2
m Ln

[
m
√

η
2ω

∫
e−3Ωdτ

]
, f(φ) = ωemφ, m �= 0√

2η
∫
e−3Ωdτ f(φ) = ω, m = 0

(18)

In our particular case, it is evident that the contribution of the scalar field is equivalent to
a stiff fluid with a barotropic equation of state γ = 1. This is an instance of the results of
the analysis of the energy momentum tensor of a scalar field (15) by Madsen [12] for General
Relativity with scalar matter and by Pimentel [13] for the general scalar tensor theory. In both
works a free scalar field is equivalent to a stiff matter fluid. In this way, we write the action (3)
in the usual form

I =

∫
Σ

√−g (R + LΛ + Lmat + Lφ) d
4x, (19)

and consequently, the classical equivalence between the two theories. We can infer that this
correspondence is also satisfied in the quantum regime, so we can use this structure for the
quantization program, where the ADM formalism is well known for different classes of matter
[14].

3. Hamiltonian for the Bianchi type I cosmological model
Let us recall here the canonical formulation in the ADM formalism of the diagonal Bianchi Class
A models. The metric has the form

ds2 = −(Ndt)2 + e2Ω(t) (e2β(t))ij ω
i ωj = −dτ2 + e2Ω(t) (e2β(t))ij ω

i ωj, (20)

where Ω(t) is a scalar, N the lapse function and βij(t) a 3x3 diagonal matrix, βij = diag(β+ +√
3β−, β+ −

√
3β−,−2β+), ω

i are one-forms that characterize each cosmological Bianchi type
model and obey dωi = 2C

i
jkω

j ∧ ωk, Ci
jk the structure constants of the corresponding invariance

group. For the Bianchi type I model we have

ω1 = dx1 ω2 = dx2, ω3 = dx3

The total Lagrangian density then for this metric becomes

LI = e3Ω
[
6
Ω̇2

N
− 6

β̇2
+

N
− 6

β̇2−
N

+
f(φ)

2N
φ̇2 + 2Nρ+ 2NΛ

]
, (21)

and the corresponding Hamiltonian density is

H⊥ =
e−3Ω

24

(
−Π2

Ω − 12

f(φ)
Π2

φ +Π2
+ +Π2

− + bγe
−3(γ−1)Ω + 48Λe6Ω

)
, (22)

with bγ = 48μγ , where we have used energy-momentum conservation the law for a perfect fluid,

Tμν
;ν = 0,→ ρ = μγe

−3(γ+1)Ω, we assumed an equation of state p = γρ,
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3.1. Classical equations
The corresponding Einstein field equations (13) and (14) for the anisotropic cosmological model
bianchi type I are the following (remember that the prime ′ is the derivative over the time
dτ = Ndt,

3Ω′2 − 3β′2
+ − 3β′2

− − f

4
φ′2 − ρ− Λ = 0

2Ω′′ + 3Ω′2 − 3Ω′β′
+ − 3

√
3Ω′β′

− − β′′
+ + 3β′2

+ −
√
3β′′

− + 3β′2
− +

f

4
φ′2 + p− Λ = 0, (23)

2Ω′′ + 3Ω′2 − 3Ω′β′
+ + 3

√
3Ω′β′

− − β′′
+ + 3β′2

+ +
√
3β′′

− + 3β′2
− +

f

4
φ′2 + p− Λ = 0,

2Ω′′ + 3Ω′2 + 6Ω′β′
+ + 2β′′

+ + 3β′2
+ + 3β′2

− +
f

4
φ′2 + p− Λ = 0

f
(
3Ω′φ′ + φ′′)+ 1

2

df

dφ
φ′2 = 0, (24)

the solution of this last equation was putted in (17),

1

2
f(φ)φ′2 = ηe−6Ω, →

∫ √
f(φ)dφ =

√
2η

∫
e−3Ω(τ)dτ. (25)

The combination between the second and third equations us give the solution for the anisotropic
function β−, also the sum of third and fourth equations, putting the β− solution, give us the
form of the β+ function,

β±(τ) = a±
∫

e−3Ω(τ)dτ, (26)

where a± are integration constants. So, the (23) are rewritten as

3Ω′2 = 3c1e
−6Ω + μγe

−3(γ+1)Ω + Λ, c1 = a2+ + a2− +
η

6
,

2Ω′′ + 3Ω′2 + 3β′2
+ + 3β′2

− +
f

4
φ′2 + p− Λ = 0, (27)

4. Isotropization
The current observations of the cosmic background radiation set a very stringent limit to the
anisotropy of the universe ( [15]), therefore it is important to consider the anisotropy of the
solutions. Recalling the Friedmann equation (constraint equation),

3Ω′2 − 3β′2
+ − 3β′2

− − f

4
φ′2 − ρ− Λ = 0, (28)

we can see that isotropization is achieved when the terms with β′2± go to zero or are negligible
with respect to the other terms in the differential equation. We find in the literature the
criteria for isotropization, among others, (β′2

+ + β′2−)/H2 → 0 , (β′2
+ + β′2−)/ρ → 0 ,

that are consistent with our above remark. In the present case the comparison with the density
should include the contribution of the scalar field. We define an anisotropic density ρa, that is
proportional to the shear scalar,

ρa = β′2
+ + β′2

− , (29)

and will compare it with ργ ,ρφ, and Ω′2. From the Hamilton Jacobi analysis we now that

ρa ∼ e−6Ω, ρφ ∼ e−6Ω, Ω′2 ∼ 48Λ + κΩ
2e−6Ω + bγe

−3(1+γ)Ω (30)
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and the ratios are

ρa
ρφ

∼ constant,
ρa
ργ

∼ e3Ω(γ−1),
ρa
Ω′2 ∼ 1

κΩ2 + 48Λe6Ω + bγe3(1−γ)Ω
. (31)

Here we see that for expanding an universe the anisotropic density is dominated by the fluid
density (with the exception of the stiff fluid) or by the Ω′2 term and then at late times the
isotropization is obtained if the expansion goes to infinity. Hence it is necessary to determine
when we have an ever expanding universe.

In the following we obtain exact solutions in order to gives the volume function V to each
case.

4.1. Exact Classical solutions
In order to find the solutions for the remaining minisuperspace variables we employ the Einstein-

Hamilton-Jacobi equation, which arises by making the identification ∂S(Ω,β±,φ)
∂qμ = Πμ in the

Hamiltonian constraint H⊥ = 0, which results in

(
∂S

∂Ω

)2

−
(

∂S

∂β+

)2

−
(

∂S

∂β−

)2

+
12

f(φ)

(
∂S

∂φ

)2

− bγe
3Ω(1−γ) − 48Λe6Ω = 0 (32)

in order to solve the above equation, we assume a solution of the form S(Ω, β±, φ) = S1(Ω) +
S2(β+) + S3(β−) + S4(φ) which results in the following set of ordinary differential equations

(
dS1
dΩ

)2
−
(
bγe

−3(γ−1)Ω + 48Λe6Ω + κΩ
2
)
= 0 (33)(

dS2
dβ+

)2
− κ+

2 = 0 (34)(
dS3
dβ−

)2
− κ−2 = 0 (35)

12
f(φ)

(
dS4
dφ

)2
− κφ

2 = 0. (36)

Here the κi are separation constants satisfying the relation κΩ
2 = κ+

2 + κ−2 + κφ
2, κ± are real,

κφ
2 should have the same signs as f(φ) and for consistency with Eq.(17) we have κφ

2 = 24η.
Recalling the expressions for the momenta we can obtain solutions for equations (33-36) in
quadrature, in particular

Δτ = 12

∫
dΩ√

48Λ + κΩ2e−6Ω + bγe−3(1+γ)Ω
. (37)

Δβ± = ∓κ±
12

∫
e−3Ω(τ)dτ. (38)

We already know the solution for (36). As can be seen from (38), in order to obtain solutions
for β± one needs to find a solution for Ω, which can be obtained from (37), and this one does
not have a general solution, however, it is possible find solutions for particular values of the
barotropic parameter γ with Λ �= 0.

(i) Λ = 0 and γ �= 1
The equation (37) can be written as

dτ = 12
e3ΩdΩ√

κΩ2 + bγe−3Ω(γ−1)
. (39)
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when we consider the time transformations dτ = e3γΩdT, and the change of variable
u = κΩ

2 + bγe
−3(γ−1)Ω, this equation has the solution

Ω(T) = Ln
[
θγT

2 + δγT
]− 1

3(γ−1) , (40)

where θγ =
(
γ−1
8

)2
bγ and δγ = −

√
κΩ2 γ−1

4 . With this, the time transformation becomes

dτ =
[
θγT

2 + δγT
]− γ

(γ−1) dT.

and the closed form is [16],

τ =
(1− γ)

δγ

[
θγT

2 + δγT
] 1
1−γ

2F1

(
1,− 2

γ − 1
;
γ − 2

γ − 1
;−Tθγ

δγ

)
, (41)

here 2F1 is a hypergeometric function. We also have∫
e−3Ωdτ =

1

δγ
Ln

[
T

θγT+ δγ

]
. (42)

The anisotropy functions and the scalar field are given by

Δβ± = ∓ κ±
12δγ

Ln

[
T

θγT+ δγ

]
. (43)

φ(T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
(m + 2)

√
η
2ω

1
δγ

Ln
[

T
θγT+δγ

]] 2
m+2

, f(φ) = ωφm, m �= −2

Exp

{√
2η
ω

1
δγ

Ln
[

T
θγT+δγ

]}
, f(φ) = ωφ−2, m = −2

2
m Ln

[
m
√

η
2ω

1
δγ

Ln
[

T
θγT+δγ

]]
, f(φ) = ωemφ, m �= 0

√
2η 1

δγ
Ln
[

T
θγT+δγ

]
f(φ) = ω, m = 0

(44)

As a concrete example we consider the particular value γ = 0, then τ = T and Ω becomes

Ω(τ) = Ln

[
3

4
μ0T

2 +

√
κΩ2

4
T

] 1
3

, ⇒ e3Ω =
3

4
μ0T

2 +

√
κΩ2

4
T. (45)

So, the classical solutions for the anisotropic function β± and φ field are,

Δβ± = ∓ κ±
3
√
κΩ2

Ln

⎡
⎣ τ√

κΩ
2

4 + 3
4μ0τ

⎤
⎦ . (46)

φ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣(m + 2)

√
η
2ωLn

⎡
⎣ τ√

κΩ
2

4
+ 3

4
μ0τ

⎤
⎦
⎤
⎦

2
m+2

, f(φ) = ωφm, m �= −2

Exp

⎧⎨
⎩
√

2η
ω Ln

⎡
⎣ τ√

κΩ
2

4
+ 3

4
μ0τ

⎤
⎦
⎫⎬
⎭, f(φ) = ωφ−2, m = −2

2
m Ln

⎡
⎣m√ η

2ωLn

⎡
⎣ τ√

κΩ
2

4
+ 3

4
μ0τ

⎤
⎦
⎤
⎦, f(φ) = ωemφ, m �= 0

√
2η 4√

κΩ
2
Ln

⎡
⎣ τ√

κΩ
2

4
+ 3

4
μ0τ

⎤
⎦ . f(φ) = ω, m = 0

(47)
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(ii) Λ = 0 and γ = 1
In this case equation (37) is

Δτ =

∫
12√

b2e−6Ω
dΩ (48)

with b2 = κΩ
2 + 48μ1 that we assume positive.

The corresponding solutions are

e3Ω =

√
b2Δτ

4
,

Δβ± = ∓κ±
12

∫
e−3Ω(τ)dτ = ∓κ±

1

3
√
b2

Ln(Δτ),

φ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
(m + 2)

√
η
2ω

4√
b2
Ln(Δτ)

] 2
m+2

, f(φ) = ωφm, m �= −2

Exp

{√
2η
ω

4√
b2
Ln(Δτ)

}
, f(φ) = ωφ−2, m = −2

2
m Ln

[
m
√

η
2ω

4√
b2
Ln(Δτ)

]
, f(φ) = ωemφ, m �= 0√

2η 4√
b2
Ln(Δτ), f(φ) = ω, m = 0

(49)

(iii) Λ �= 0 and γ = −1
(37) has the form

Δτ =

∫
12√

κΩ2e−6Ω + b3
dΩ (50)

where b3 = 48μ−1 + 48Λ .

Δτ =
4√
b3

arccsch

⎛
⎝
√

κΩ2

b3
e−3Ω

⎞
⎠ (51)

solving for Ω

Ω =
1

3
Ln

∣∣∣∣∣∣
√

κΩ2

b3
sinh

(√
b3
4

Δτ

)∣∣∣∣∣∣ . (52)

So, the others solutions become

Δβ±(τ) = ± κ±
3
√
κΩ2

Ln |Σ| , Σ = tanh

(√
b3
4

Δτ

)
(53)

φ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−(m + 2)

√
η
2ω

4√
κΩ

2
Ln |Σ|

] 2
m+2

, f(φ) = ωφm, m �= −2

Exp

{
−
√

2η
ω

4√
κΩ

2
Ln |Σ|

}
, f(φ) = ωφ−2, m = −2

2
m Ln

[
−m

√
η
2ω

4√
κΩ

2
Ln |Σ|

]
, f(φ) = ωemφ, m �= 0

−√
2η 4√

κΩ
2
Ln |Σ| f(φ) = ω, m = 0

(54)

with the condition ω > 0.
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(iv) Λ �= 0 and γ = 0
For this case, equation (37) is

Δτ =

∫
12e3Ω√

κΩ2 + 48μ0e3Ω + 48Λe6Ω
dΩ (55)

=
1√
3Λ

Ln

[
b0 + 96Λe3Ω

48Λ
+

1

2
√
3Λ

√
κΩ2 + b0e3Ω + 48Λe6Ω

]
(56)

with b0 = 48μ0, and Λ > 0.
The function Ω become

Ω =
1

3
Ln

⎡
⎢⎣12Λ

(
e
√
3ΛΔτ − b0

48Λ

)2
− κΩ

2

48Λe
√
3ΛΔτ

⎤
⎥⎦ (57)

and we have for the anisotropic functions β± and field φ,

Δβ±(τ) = ± 2κ±
3
√
κΩ2

arctanh (ξ) , ξ = 2

√
3Λ

κΩ2

(
− b0
48Λ

+ e
√
3ΛΔτ

)

φ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−(m + 2)

√
η
2ω

8√
κΩ

2
arctanh (ξ)

] 2
m+2

, f(φ) = ωφm, m �= −2

Exp

{
−
√

2η
ω

8√
κΩ

2
arctanh (ξ)

}
, f(φ) = ωφ−2, m = −2

2
m Ln

[
−m

√
η
2ω

8√
κΩ

2
arctanh (ξ)

]
, f(φ) = ωemφ, m �= 0

−√
2η 8√

κΩ
2
arctanh (ξ) f(φ) = ω, m = 0

(58)

(v) Λ �= 0 and γ = 1
Equation (37) becomes

Δτ =

∫
12√

b4e−6Ω + 48Λ
dΩ (59)

where b4 = κΩ
2 + 48μ1. In this case also we have two possible solutions depending on the

value of the cosmological constant

• Λ > 0 .
The solution become

Δτ =
1√
3Λ

arcsinh

(
4

√
3Λ

b4
e3Ω
)

(60)

so, the function Ω is

Ω =
1

3
Ln

∣∣∣∣∣∣
1

4

√
b4
3Λ

sinh
(√

3ΛΔτ
)∣∣∣∣∣∣ . (61)

The others functions become

Δβ± = ± κ±
3
√
b4

Ln [Ξ] , Ξ = tanh
(√

3ΛΔτ
)

φ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
−(m + 2)

√
η
2ω

4√
b4
Ln [Ξ]

] 2
m+2

, f(φ) = ωφm, m �= −2

Exp

{
−
√

2η
ω

4√
b4
Ln [Ξ]

}
, f(φ) = ωφ−2, m = −2

2
m Ln

[
−m

√
ωη
2ω

4√
b4
Ln [Ξ]

]
, f(φ) = ωemφ, m �= 0

−√
2η 4√

b4
Ln [Ξ] f(φ) = ω, m = 0

(62)
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• Λ < 0 .
The corresponding solutions are

Δτ = − 1√
3|Λ| arccos

⎛
⎝4
√

3|Λ|
b4

e3Ω

⎞
⎠ (63)

the function Ω

Ω =
1

3
Ln

∣∣∣∣∣14
√

b4
3|Λ|cos

(√
3|Λ|Δτ

)∣∣∣∣∣ (64)

as the volume has an oscillatory behavior, the isotropization do not yield for this case,
and for completeness we calculate the anisotropic functions β± and field φ,

Δβ± = ∓ κ±
3
√
b4

Ln |ψ| , ψ = sec

(√
3|Λ|Δτ

)
+ tan

(√
3|Λ|Δτ

)
,

φ(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
(m + 2)

√
η
2ω

4√
b4
Ln |ψ|

] 2
m+2

, f(φ) = ωφm, m �= −2

Exp

{√
2η
ω

4√
b4
Ln |ψ|

}
, f(φ) = ωφ−2, m = −2

2
m Ln

[
m
√

η
2ω

4√
b4
Ln |ψ|

]
, f(φ) = ωemφ, m �= 0√

2η 4√
b4
Ln |ψ| f(φ) = ω, m = 0

(65)

5. Final remarks
In this work we present the study of the classical cosmological anisotropic Bianchi type I in
the K-essence formalism. In previous work made by Chimento and co-researcher [11], they
present the possible isotropization of this model. Our goal in this work is that we obtain the
corresponding classical solutions for a barotropic perfect fluid and cosmological term Λ that
mimic the scalar field in equation (1). In the case of Λ = 0 and γ �= 1 we obtain the solutions
in closed form. With these solutions we can validate our qualitative analysis on isotropization
of the cosmological model, implying that these become isotropic when the volume is large in
the corresponding time evolution. So, only one solutions do not present the large volume, when
Λ < 0 in stiff matter era in the ordinary matter content.
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