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Abstract. We show that among tori of revolution the Clifford torus gives the minimum value
of the Möbius invariant surface energy defined by Auckly and Sadun.

1. Introduction and main result
Recently Fernando C. Marques and André Neves (Marques & Neves) proved the Willmore
conjecture, namely, they showed the following. Let Σ be an immersed torus in R3. Let κ1

and κ2 be principal curvatures. The Willmore functional is given by

W(Σ) =

∫
Σ

(
κ1 + κ2

2

)2

dΣ =

∫
Σ

(
κ1 − κ2

2

)2

dΣ,

where the second equation is the consequence of the Gauss-Bonnet theorem. It is known to be
invariant under Möbius transformations of R3. Then the Willmore conjecture, now the theorem
of Marques and Neves, asserts that W(Σ) ≥ 2π2 and that the equality holds if and only if Σ is
a torus of revolution whose generating circle has radius 1 and center at distance

√
2 from the

axis of revolution up to a Möbius transformation, in other words, if and only if Σ is the image
of a stereographic projection of the Clifford torus{

(z1, z2) ∈ C× C
∣∣∣ |z1| = |z2| = 1/

√
2
}
⊂ S3 =

{
(z1, z2) ∈ C× C

∣∣∣ |z1|2 + |z2|2 = 1
}
.

In this paper, we give another characterization of the Clifford torus using the surface energy
introduced by David Auckly and Lorenzo Sadun ((1)), which is also invariant under Möbius
transformations. To be precise, we have not yet succeeded in proving that the Clifford torus
gives the minimum energy among all the immersed tori1. We only show that it gives the
minimum energy among one-parameter family of tori of revolution. Since the energy we use is
conformally invariant, it follows that the Clifford torus gives the minimum energy among Dupin
cyclides. As the surface energy that we use in this paper is generelization of knot energy, we
start with the review of it.

Energy of knots was introduced in (5) motivated to give a functional on the space of knots
that can produce a representative configuration of a knot for each knot type as an embedding

1 To show it, it suffice to show that the Clifford torus gives the minimum energy among all the embedded tori,
since the energy blows up if a torus has a double point
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that minimizes the energy in the knot type. Let K be a knot and x be a point on it. Define

V (x;K) = lim
ε→0

(∫
K\Bε(x)

dy

|x− y|2
− 2

ε

)
, and E(K) =

∫
K
V (x;K)dx, (1)

where Bε(x) is a ball with center x and radius ε. Let us call a process as in the definition
of V (x;K) in (1) the renormalization in this paper. In general, when we are interested in a
diverging integral, we first restrict the integration to the complement of an ε-neighbourhood of
the set where the integrand blows up, then expand the result in a Laurent series in ε, and finally
take the constant term. In the case of a knot, the integrand of V in (1) blows up at the one-point
set {x}. There are two ways to define an ε-neighbourhood of it, according to the choice of the
distance between a pair of points on the knot; either the chord length as in (1) or the arc-length
along the knot as in (5). Both types of the renormalization give the same result ((6)).

The energy E(K) in (1) was proved to be invariant under Möbius transformations by
Freedman, He, and Wang ((2)), which is the reason why it is sometimes called the Möbius
energy of knots.

After this energy was found, it has been generalized to functionals that can measure geometric
complexity of knots, surfaces, and in general, submanifolds ((1), (3), et al.). Among several ways
of generalization to surface energy, in this paper we study the one by Auckly and Sadun that
uses a similar renormalization process as in (1).

Let S be an embedded surface in R3 without boundary and x be a point in S. Define the
renormalized r−4-potential V and the renormalized r−4-potential energy E by

V (x;S) = lim
ε→0

(∫
S\Bε(x)

d2y

|x− y|4
− π

ε2
+
π∆(x)

16
log
(
∆(x)ε2

)
+
πK(x)

4

)
,

E(S) =

∫
S
V (x;S)d2x,

(2)

where d2y and d2x mean the volume element of S, ∆(x) is given by ∆(x) = (κ1(x) − κ2(x))2,
and K(x) is the Gauss curvature; K = κ1κ2. This energy E(S) was proved to be invariant
under Möbius transformations in (1). It blows up as S degenerates to an immersed surface with
double points.

As was pointed out in (1), the choice of the log-term in (2) is not the unique reasonable one.
The reason why there is a factor ∆(x) in the log-term is to make the resulting energy scale
invariant, but c∆(x) (c 6= 0) also has the same effect. Thus there is ambiguity in the definition
of the renormalized potential.

In (1), Auckly and Sadun has computed the energy of spheres and planes and the potentials
V of an infinitely long straight cylinder and a surface called dimple. In this article we compute
the energies of one-parameter family of tori of revolution.

Theorem: Let TR be a torus of revolution whose generating circle has radius 1 and center at
distance R (R > 1) from the axis of revolution. Then the renormalized potential energy is given
by

E(TR) =
π3

2
√
R2 − 1

(
R2 (3 log 2− 1) + 2− 2

R2

)
.

Corollary: Among tori of revolution, a stereographic projection of the Clifford torus gives the
minimum energy.
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Proof of Corollary: Since

d

dR
E(TR) =

π3(R2 − 2)
(
(R2 − 2)2 + 3R4 log (4/e)

)
4R3 (R2 − 1)3/2

,

the energy takes the minimum value π3(6 log 2− 1)/2 when R =
√

2. �

Problem: (1) Does T√2 give the minimum energy among all the embedded tori in R3, hence

among all the immersed tori in R3?
(2) When we change the power of |x − y| in the denominator in (2) from 4 to any number

λ, we obtain a new potential energy Er−λ after suitable renormalization. It is no longer scale
invariant when λ 6= 4. What is R = R(λ) that makes TR give the minimum energy Er−λ after
rescaling to have area 1?

2. Computation of the energy of a torus

Proof of Theorem: Let T be a torus of revolution parametrized by

p(u, v) = ((R+ cosu) cos v, (R+ cosu) sin v, sinu).

Let x = p(α, 0) = (R + cosα, 0, sinα) be a point on T . First we fix α and compute
the renormalized r−4-potential of T at x. This is the main part of the paper. Some of the
complicated computation to obtain expansion in seiries in ε has been done with the help of
Maple.

Let Dist = Dist(u, v) be the distance between x and a point y = p(u, v):

Dist2 = |x− y|2 = |p(u, v)− p(α, 0)|2

= ((R+ cosα)− (R+ cosu) cos v)2 + (R+ cosu)2 sin2 v + (sinα− sinu)2

= 2R2 + 2 + 2R (cosα+ cosu)− 2 sinα sinu− 2 (R+ cosα) (R+ cosu) cos v.

To compute the integral
∫
T\Bε(x) |x − y|−4d2y, we will divide the domain of the integration

into four parts and use several kinds of changes of variables. We may assume without loss of
generality that u ∈ [α− π, α+ π] and v ∈ [−π, π]. Put

θ =
π

2
− u− α

2
, t = 2 cos θ = 2 sin

u− α
2

.

Then, as (u− α)/2 ∈ [−π/2, π/2] we have θ ∈ [0, π] and cos(u− α)/2 ≥ 0. Therefore,

cosu =
2− t2

2
cosα− t

√
4− t2
2

sinα, sinu =
t
√

4− t2
2

cosα+
2− t2

2
sinα,

which implies that the distance can be expressed as

Dist2 = t2 +
[
4(R+ cosα)2 − 2(R+ cosα) cosα · t2 − 2(R+ cosα) sinα · t

√
4− t2

]
sin2 v

2

= 4
[
cos2 θ + (R+ cosα)

(
R+ cosα− 2 cosα cos2 θ − 2 sinα sin θ cos θ

)
sin2 v

2

]
= 4

[
cos2 θ + (R+ cosα) (R− cos(α− 2θ)) sin2 v

2

]
.
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Define b = b(θ) and c = c(t) by

c(t) = 2(R+ cosα)
[
2(R+ cosα)− cosα · t2 − sinα · t

√
4− t2

]
b=

c

4
= (R+ cosα) (R− cos(α− 2θ)) .

(3)

Then
Dist2 = t2 + c(t) sin2 v

2
= 4

(
cos2 θ + b sin2 v

2

)
.

Put

V (ε, x) =

∫∫
Dist≥ε

d2y

|x− y|2
.

Since the area element of T is given by d2y = (R+ cosu) dudv, V (ε, x) is given by∫∫
Dist≥ε

(R+ cosu)

(2R2 + 2 + 2R (cosα+ cosu)− 2 sinα sinu− 2 (R+ cosα) (R+ cosu) cos v)2 dudv

=

∫∫
Dist≥ε

R+
(

2−t2
2 cosα− t

√
4−t2
2 sinα

)
(
t2 + c(t) sin2 v

2

)2 2dt√
4− t2

dv (4)

=
1

8

∫∫
Dist≥ε

(R− cos(α− 2θ))(
cos2 θ + b sin2 v

2

)2 dθdv. (5)

The integration by dv an be executed as∫
dv

(A2 +B sin2 v
2 )2

=
2A2 +B

A3(A2 +B)
3
2

tan−1

(√
A2 +B

A
tan

v

2

)
+

B tan v
2

A2(A2 +B)
(
(A2 +B) tan2 v

2 +A2
) . (6)

We devide the domain of the integration T \Bε(x) into eight parts as is illustrated in Figure
1. Using symmetry, we have only to compute integrals over the following four regions{

p(u, v) | 2 sin−1(ε/2) ≤ u− α ≤ π, 0 ≤ v ≤ π
}
,{

p(u, v) | 0 ≤ u− α ≤ sin−1(ε/2), 0 ≤ v ≤ π, |p(u, v)− x| ≥ ε
}
,{

p(u, v) | −π ≤ u− α ≤ −2 sin−1(ε/2), 0 ≤ v ≤ π
}
,{

p(u, v) | −2 sin−1(ε/2) ≤ u− α ≤ 0, 0 ≤ v ≤ π, |p(u, v)− x| ≥ ε
}
,

which we denote by I1, I2, I3, and I4 respectively. We remark that the regions given by the first
and the third lines do not have intersection with Bε(x).

Let us first compute I2 and I4 using variables (t, v). Since 0 ≤ u − α ≤ 2 sin−1(ε/2) we
have

0 ≤ t = 2 sin((u− α)/2) ≤ ε,

and the condition |p(u, v)− x| ≥ ε implies

sin2 v

2
=

Dist2 − t2

c(t)
≥ ε2 − t2

c(t)
, i.e., v ≥ 2 sin−1

(√
ε2 − t2
c(t)

)
.
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Figure 1. Parts of the domains of integration of I1 (blue or light grey) and I4 (red or dark
grey) near the point x

Therefore, I2 is given by

I2 =

∫ ε

0

∫ π

2 sin−1

(√
ε2−t2
c(t)

) 2R+ cosα · (2− t2)− sinα · t
√

4− t2
(t2 + c(t) sin2 v

2 )2
dv

dt√
4− t2

.

By the formula (6) we get

I2 =

∫ ε

0

{
2R+ cosα · (2− t2)− sinα · t

√
4− t2√

4− t2

×

[
2t2 + c(t)

t3(t2 + c(t))
3
2

tan−1

(√
t2 + c(t)

t
tan

v

2

)

+
c(t) tan v

2

t2(t2 + c(t))
(
(t2 + c(t)) tan2 v

2 + t2
)]π

v=2 sin−1

(√
ε2−t2
c(t)

)
 dt

=

∫ ε

0

2R+ cosα · (2− t2)− sinα · t
√

4− t2√
4− t2

×

{
2t2 + c(t)

t3(t2 + c(t))
3
2

(
π

2
− tan−1

(√
ε2 − t2
t

√
c(t) + t2

c(t) + t2 − ε2

))
−
√
ε2 − t2

√
c(t) + t2 − ε2

ε2t2(t2 + c(t))

}
dt

Putting τ = sin−1(t/ε), i.e., t = ε sin τ , we have

I2 =

∫ π
2

0

2R+ cosα · (2− ε2 sin2 τ)− ε sinα sin τ
√

4− ε2 sin2 τ√
4− ε2 sin2 τ

×

{
cos τ

(
2ε2 sin2 τ + c(ε sin τ)

)
ε2 sin3 τ(ε2 sin2 τ + c(ε sin τ))

3
2

(
π

2
− tan−1

(
cot τ

√
c(ε sin τ) + ε2 sin2 τ

c(ε sin τ) + ε2 sin2 τ − ε2

))

−cot2 τ
√
c(ε sin τ) + ε2 sin2 τ − ε2

ε2(ε2 sin2 τ + c(ε sin τ))

}
dτ.
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Expanding the integrand in a series in ε with the help of Maple we obtain

I2 =
1

2ε2

∫ π
2

0

(
τ

cos τ

sin3 τ
− cos2 τ

sin2 τ

)
dτ − sinα

4(R+ cosα)ε

∫ π
2

0

(
τ

cos τ

sin2 τ
− cos2 τ

sin τ

)
dτ

+
R2

16(R+ cosα)2

∫ π
2

0

(
τ

cos τ

sin τ
− cos2 τ

)
dτ +

1

8(R+ cosα)2

∫ π
2

0
cos2 τdτ +O(ε).

(7)

Direct integration shows∫ π
2

0

(
τ

cos τ

sin3 τ
− cos2 τ

sin2 τ

)
dτ =

1

2

[
τ + sin τ cos τ − 2τ cos2 τ

sin2 τ

]π
2

0

=
π

4
,∫ π

2

0

(
τ

cos τ

sin2 τ
− cos2 τ

sin τ

)
dτ =

[
− cos τ − τ

sin τ

]π
2

0
=

4− π
2

.

(8)

On the other hand,
∫ π

2
0

(
τ cot τ − cos2 τ

)
dτ can be computed as follows.

Put

I =

∫ π
2

0
log(sin τ)dτ.

Then

I =

∫ π
2

0
log
(

sin
(π

2
− τ ′

))
dτ ′ =

∫ π
2

0
log(cos τ)dτ.

Adding the two above, we get

2I =

∫ π
2

0
log(sin τ cos τ)dτ

=

∫ π
2

0
log(sin 2τ)dτ − π

2
log 2

=
1

2

∫ π

0
log(sin τ ′)dτ ′ − π

2
log 2

=
1

2

(∫ π
2

0
log(sin τ)dτ +

∫ π

π
2

log(sin τ)dτ

)
− π

2
log 2

= I − π

2
log 2,

which implies

I =

∫ π
2

0
log(sin τ)dτ = −π

2
log 2.

Now we have ∫ π
2

0

(
τ

cos τ

sin τ
− cos2 τ

)
dτ =

[
τ log(sin τ)

]π
2

0

−
∫ π

2

0
log(sin τ)dτ − π

4

=
π

4
(2 log 2− 1).

(9)

Substituting (8) and (9) to (7) we obtain

I2 =
π

8ε2
+

(π − 4) sinα

8(R+ cosα)ε
+

πR2

64(R+ cosα)2
(2 log 2− 1) +

π

32(R+ cosα)2
+O(ε).
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The integral I4 can be obtained from I2 by changing α to −α:

I4 =

∫ 0

−ε

∫ π

2 sin−1

(√
ε2−t2
c(t)

) 2R+ cosα · (2− t2)− sinα · t
√

4− t2
(t2 + c(t) sin2 v

2 )2

dt√
4− t2

dv

=
π

8ε2
− (π − 4) sinα

8(R+ cosα)ε
+

πR2

64(R+ cosα)2
(2 log 2− 1) +

π

32(R+ cosα)2
+O(ε).

Let us next compute I1 and I3. Since u − α ∈ [2 sin−1(ε/2), π] θ = π/2 − (u − α)/2 ∈
[0, cos−1(ε/2)]. The integral I1 is given by

I1 =
1

8

∫ cos−1 ε
2

0

∫ π

0

R− cos(α− 2θ)

(cos2 θ + b sin2 v
2 )2

dvdθ,

where b = (R+ cosα) (R− cos(α− 2θ)) as was given by (3). Put a = cos θ. Then (6) shows∫ π

0

dv

(a2 + b sin2 v
2 )2

=
2a2 + b

a3(a2 + b)
3
2

· π
2
.

Since
R− cos(α− 2θ) = R+ cosα− 2 cosα cos2 θ − 2 sinα sin θ cos θ,

we have

I1 =
π

16

∫ cos−1 ε
2

0
(R− cos(α− 2θ))

2a2 + b

a3(a2 + b)
3
2

dθ

=
π

16

∫ cos−1 ε
2

0

[
(R+ cosα)− 2 cosα cos2 θ − 2 sinα sin θ cos θ

] (a2 + b) + a2

a3(a2 + b)
3
2

dθ

=
π(R+ cosα)

16
I11 −

π cosα

8
I12 −

π sinα

8
I13 +

π(R+ cosα)

16
I14 −

π cosα

8
I15 −

π sinα

8
I16,

where

I11 =

∫ cos−1 ε
2

0

dθ

a3
√
a2 + b

, I12 =

∫ cos−1 ε
2

0

cos2 θ dθ

a3
√
a2 + b

, I13 =

∫ cos−1 ε
2

0

sin θ cos θ dθ

a3
√
a2 + b

,

I14 =

∫ cos−1 ε
2

0

dθ

a(a2 + b)
3
2

, I15 =

∫ cos−1 ε
2

0

cos2 θ dθ

a(a2 + b)
3
2

, I16 =

∫ cos−1 ε
2

0

sin θ cos θ dθ

a(a2 + b)
3
2

.

These integrals can be computed using

a2 + b = cos2 θ
(
R2 + ((R+ cosα) tan θ − sinα)2

)
, tan

(
cos−1

(ε
2

))
=

√
4− ε2

ε
.
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We have used Maple to expand them in series in ε (the last step of each computation of I1j).

I15 =

∫ cos−1 ε
2

0

1

cos2 θ
(
R2 + ((R+ cosα) tan θ − sinα)2

) 3
2

dθ

=

 (R+ cosα) tan θ − sinα

R2(R+ cosα)
√
R2 + ((R+ cosα) tan θ − sinα)2

cos−1 ε
2

0

=
(R+ cosα)

√
4− ε2 − (sinα)ε

R2(R+ cosα)
√
R2ε2 + ((R+ cosα)

√
4− ε2 − (sinα)ε)2

+
sinα

R2(R+ cosα)
√
R2 + sin2 α

=
1

R2(R+ cosα)
+

sinα

R2(R+ cosα)
√
R2 + sin2 α

+O (ε) ,

I16 =

∫ cos−1 ε
2

0

sin θ

cos3 θ
(
R2 + ((R+ cosα) tan θ − sinα)2

) 3
2

dθ

=

 sinα ((R+ cosα) tan θ − sinα)−R2

R2(R+ cosα)2

√
R2 + ((R+ cosα) tan θ − sinα)2

cos−1 ε
2

0

=
sinα

(
(R+ cosα)

√
4− ε2 − (sinα)ε

)
−R2ε

R2(R+ cosα)2

√
R2ε2 +

(
(R+ cosα)

√
4− ε2 − (sinα)ε

)2
+

√
R2 + sin2 α

R2(R+ cosα)2

=
sinα

R2(R+ cosα)2
+

√
R2 + sin2 α

R2(R+ cosα)2
+O (ε) ,

I12 =

∫ cos−1 ε
2

0

1

cos2 θ
√
R2 + ((R+ cosα) tan θ − sinα)2

dθ

=

[
1

R+ cosα
sinh−1

(
(R+ cosα) tan θ − sinα

R

)]cos−1 ε
2

0

=
1

R+ cosα

{
sinh−1

(
(R+ cosα)

√
4− ε2 − (sinα)ε

Rε

)
+ sinh−1

(
sinα

R

)}

=− 1

2(R+ cosα)
log

(
R2ε2

16(R+ cosα)2

)
+

1

R+ cosα
sinh−1

(
sinα

R

)
+O(ε),
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I13 =

∫ cos−1 ε
2

0

sin θ

cos3 θ
√
R2 + ((R+ cosα) tan θ − sinα)2

dθ

=
sinα

R+ cosα
I12 +

1

(R+ cosα)2

[√
R2 + ((R+ cosα) tan θ − sinα)2

]cos−1 ε
2

0

=
sinα

R+ cosα
I12 +

√
R2ε2 +

(
(R+ cosα)

√
4− ε2 − (sinα)ε

)2

(R+ cosα)2ε
−
√
R2 + sin2 α

(R+ cosα)2

=
sinα

R+ cosα
I12 +

{
2

(R+ cosα)ε
− sinα

(R+ cosα)2
+O (ε)

}
−
√
R2 + sin2 α

(R+ cosα)2
,

I14 =

∫ cos−1 ε
2

0

1

cos4 θ
(
R2 + ((R+ cosα) tan θ − sinα)2

) 3
2

dθ

=
1

(R+ cosα)2
I12 −

(1− 2R cosα− 2 cos2 α)

(R+ cosα)2
I15 +

2 sinα

R+ cosα
I16

=
1

(R+ cosα)2
I12 +

1 + 2R cosα

R2(R+ cosα)3
+

(1 + 2R2) sinα+ 2R2 sinα cosα

R2(R+ cosα)3
√
R2 + sin2 α

+O(ε) ,

and

I11 =

∫ cos−1 ε
2

0

1

cos4 θ
√
R2 + ((R+ cosα) tan θ − sinα)2

dθ

=
R2 − 1 + 4R cosα+ 3 cos2 α

2(R+ cosα)2
I12 +

3 sinα

2(R+ cosα)
I13

+

sin θ
√
R2 + ((R+ cosα) tan θ − sinα)2

2(R+ cosα)2 cos θ

cos−1 ε
2

0

=
R2 − 1 + 4R cosα+ 3 cos2 α

2(R+ cosα)2
I12 +

3 sinα

2(R+ cosα)
I13

+

√
4− ε2

√
R2ε2 +

(
(R+ cosα)

√
4− ε2 − (sinα)ε

)2

2(R+ cosα)2ε2

=
R2 − 1 + 4R cosα+ 3 cos2 α

2(R+ cosα)2
I12 +

3 sinα

2(R+ cosα)
I13

+

{
2

(R+ cosα)ε2
− sinα

(R+ cosα)2ε
− R2 + 4R cosα+ 2 cos2 α

4(R+ cosα)3
+O (ε)

}
.
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Therefore

I1 =
π(R+ cosα)

16
I11 −

π cosα

8
I12 −

π sinα

8
I13 +

π(R+ cosα)

16
I14 −

π cosα

8
I15 −

π sinα

8
I16

=
πR2

32(R+ cosα)
I12 +

π

8ε2
− sinα

8(R+ cosα)ε
− π(R2 + 4R cosα+ 2 cos2 α)

64(R+ cosα)2
− π

16R2(R+ cosα)2

+
π sin2 α

32(R+ cosα)2
− π sinα

16R2(R+ cosα)2
√
R2 + sin2 α

+
π sinα

√
R2 + sin2 α

32(R+ cosα)2
+O(ε)

=− πR2

64(R+ cosα)2
log

(
R2ε2

16(R+ cosα)2

)
+

πR2

32(R+ cosα)2
sinh−1

(
sinα

R

)
+
π

8ε2
− sinα

8(R+ cosα)ε
− π(R2 + 4R cosα+ 2 cos2 α)

64(R+ cosα)2
− π

16R2(R+ cosα)2
+

π sin2 α

32(R+ cosα)2

− π sinα

16R2(R+ cosα)2
√
R2 + sin2 α

+
π sinα

√
R2 + sin2 α

32(R+ cosα)2
+O(ε).

The integral I3 can be obtained from I1 by changing α to −α:

I3 =
1

8

∫ cos−1 ε
2

0

∫ π
2

0

R− cos(−α− 2θ)

(cos2 θ + (R+ cosα)(R− cos(−α− 2θ)) sin2 v
2 )2

dvdθ

=− πR2

64(R+ cosα)2
log

(
R2ε2

16(R+ cosα)2

)
− πR2

32(R+ cosα)2
sinh−1

(
sinα

R

)
+
π

8ε2
+

sinα

8(R+ cosα)ε
− π(R2 + 4R cosα+ 2 cos2 α)

64(R+ cosα)2
− π

16R2(R+ cosα)2
+

π sin2 α

32(R+ cosα)2

+
π sinα

16R2(R+ cosα)2
√
R2 + sin2 α

−π sinα
√
R2 + sin2 α

32(R+ cosα)2
+O(ε).

By putting all the formulae together we obtain

V (ε, x) = 2 (I1 + I2 + I3 + I4)

=
π

ε2
− πR2

16(R+ cosα)2
log

(
R2ε2

(R+ cosα)2

)
+

πR2

8(R+ cosα)2
3 log 2

−π
8
− π

4R2(R+ cosα)2
+
π(1 + sin2 α)

8(R+ cosα)2
.

As the Gauss curvature and ∆ = (κ1 − κ2)2 at the point x = p(α, 0) is given by

K(x) =
cosα

(R+ cosα)
, ∆(x) =

R2

(R+ cosα)2 ,

the renormalized potential is given by

V (x;T ) = lim
ε→0

(
V (ε, x)− π

ε2
+
π∆(x)

16
log
(
∆(x)ε2

)
+
πK(x)

4

)
=

πR2

8(R+ cosα)2
3 log 2− π

8
− π

4R2(R+ cosα)2
+
π(1 + sin2 α)

8(R+ cosα)2
+

π cosα

4(R+ cosα)
.
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Finally, it implies that the renormalized r−4-potential energy of the torus T is given by

E(T ) =

∫
T
V (x;T ) d2x

= 2π

∫ 2π

0

(
πR2

8(R+ cosα)2
3 log 2− π

8
− π

4R2(R+ cosα)2
+
π(1 + sin2 α)

8(R+ cosα)2

+
π cosα

4(R+ cosα)

)
(R+ cosα) dα

=
π2

2

∫ π

0

((
R2 (3 log 2− 1) + 2− 2

R2

)
1

R+ cosα

)
dα

=
π2

2

[(
R2 (3 log 2− 1) + 2− 2

R2

)
2√

R2 − 1
tan−1

(√
R− 1

R+ 1
tan

α

2

)]π
0

=
π3

2
√
R2 − 1

(
R2 (3 log 2− 1) + 2− 2

R2

)
.

�

3. Application as another motivation
First we state our framework ((O’Hara & Solanes)). Let M be an m-dimensional compact
orientable submanifold of Rn and λ be a real number. Put

∆ε = {(x, y) ∈ Rn × Rn | |x− y| < ε}.

It is interesting to see the asymptotics of

Erλ(ε,M) =

∫∫
M×M\∆ε

|x− y|λ dmxdmy,

where dmx and dmy denote the standard Lebesgue measure of M . To be precise, we expand the
above in a series in ε and study the coefficients. For example, if K is a knot in R3 and λ = −2
then

Er−2(ε,K) =
2L(K)

ε
+ E(K) +O(ε),

where L(K) is the length of the knot and E(K) denotes the knot energy given by (1), and if S
is a closed surface in R3 and λ = −4 then

Er−4(ε, S) =
π

ε2
A(S)− π

8
log ε

∫
S

∆(x) d2x+ E(S)− π

16

∫
S

∆(x) log ∆(x) d2x− π2

2
χ(S),

where χ(S) is the Euler characteristic of S, and if Ω is a 2-dimensional compact submanifold of
R2 then

Er−4(ε,Ω) =
π

ε2
A(Ω)− 2

ε
L(∂Ω) + EOS(Ω)− π2

4
χ(Ω) +O(ε),

where A(Ω) is the area of Ω and EOS is the energy defined in (O’Hara & Solanes). We remark
that EOS is also invariant under Möbius transformations. We conjecture that a similar formula
holds for compact bodies in R3.

Let us focus on the constant term of the series of Erλ(ε,M), which, after some modification
if necessary, we call the renormalized rλ-potential energy of M , denoted by Erλ(M).
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Now we can define functionals for knots as follows. Let Nε(K) be an ε-tubular neighbourhood
of K. Expand Erλ(∂Nε(K)) and Erλ′ (Nε(K)) in series of ε. We conjecture that functionals that
can capture global properties of knots appear as a coefficient of ε2-term of Erλ(∂Nε(K)) and as
a coefficient of ε4-term of Erλ′ (Nε(K)).

When K◦ is a round circle with radius 1, our main theorem implies

Er−4(∂Nε(K◦)) =
π3ε

2
√

1− ε2

(
3 log 2− 1

ε2
+ 2− 2ε2

)
=
π3(3 log 2− 1)

2ε
+

3π3 (log 2 + 1)

4
ε+

π3 (9 log 2− 11)

16
ε3 +O(ε5).

Therefore, the functional thus obtained from the ε2-term of Er−4(∂Nε(K)) vanishes for round
circles.
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