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Abstract. It is well known that for a field theory with Chern-Simons action, expectation
values of Wilson line operators are topological invariants. The standard result is expressed in
terms of the Gaussian linkings of closed curves defining the operators. We show how a judicious
choice of Wilson lines leads to higher order topological linkings.

1. Introduction
Our understanding of knots and links in topological field theory began with the work of
Polyakov (Polyakov, 1988) who showed that the expectation value of a Wilson line in Chern-
Simons theory gives the Gaussian linking of the components of a link. This work was soon
followed by Witten’s (Witten, 1989) extensive exploration of expectation values of Wilson lines
in non-abelian Chern-Simons theory which he showed is a natural framework for understanding
Jones polynomials from knot theory. Perturbative expansion of the expectation values leads
to higher order linking and the corresponding link polynomials (Guadagnini et al., 1989). Our
approach is somewhat different. Wilson loops in the abelian Chern-Simons theory also implicitly
contains the requisite apparatus for the study of higher order linking, and we show here that
this can be facilitated by a set of gauges (Buniy & Kephart, 2008a,b, 2006) tailored to the
higher order linking problem. We begin with a discussion of intersection number and its relation
to Gaussian linking. Next we review the minimal required background from Poincaré duality
and de Rham theorem needed to carry out our calculations. We then introduce a special set of
gauge potentials that allow us to arrive at our main result—higher order linking invariants at all
orders. We conclude with detailed computations for several examples where linkings of various
orders appear.

2. Intersection and linking numbers
Suppose C and C ′ are disjoint oriented closed curves in R3, and S and S′ are surfaces such that
∂S = C and ∂S′ = C ′. By smooth deformations of C which leave it in R3\C ′, we can change
the number of points of intersection of C and S′. To find a quantity which is invariant under
such deformations, we note that additional points that appear due to the deformations come in
pairs, and the intersections of C and S′ have opposite orientations for points in each pair (and
likewise for disappearing pairs). If C and S′ intersect transversely at a point P , we define the
intersection index I(C, S′, P ) to be equal 1 or −1 depending on the relative orientation of C and
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S′ at P . We also define the intersection number I(C, S′) as the sum of the intersection indices
over all points of intersection,

I(C, S′) =
∑

P∈C∩S′

I(C, S′, P ). (1)

It is clear that I(C, S′) is invariant under the above deformations as contributions due to
additional pairs of points cancel.

One can also deform S′ into S̃′ and notice that I(C, S′) = I(C, S̃′), where ∂S′ = ∂S̃′ = C ′.
This means that the intersection number depends only on C and C ′; for this reason we
call it the linking number, L(C,C ′) = I(C, S′). Examination of relevant orientations gives
L(C,C ′) = L(C ′, C). The method of Green functions leads to an explicit Gauss expression for
the linking number of the curves in terms of their parametrizations,

L(C,C ′) = (4π)−1

∫
C×C′

∑
a,b,c

εabc
(x− x′)a

‖x− x′‖3
dxb ∧ dx′c. (2)

3. Duality
From Poincaré duality and de Rham theorem (Griffiths & Harris, 1978; Hatcher, 2002), for a
closed curve C in three dimensions, there exists a closed 2-form F such that for any 1-form B
we have ∫

C
B =

∫
R3

B ∧ F. (3)

We call (C,F ) a dual set. Since B is arbitrary, it is clear that F has support only on C, i.e.
suppF = C. Since R3 is simply connected, there exists a 1-form A such that F = dA. The
Stokes theorem then gives 1 ∫

S
dB =

∫
R3

dB ∧A. (4)

This means that there is a particular solution A such that

A(x) =

∫
y∈S

δ(x− y)
∑
a

dxa ∗ dya. (5)

This is a singular gauge with suppA = S. We can similarly introduce a dual set (C ′, F ′) such
that F ′ = dA′ and for any 1-form B′ we have∫

C′
B′ =

∫
R3

B′ ∧ F ′. (6)

Taking B = A′, B′ = A and using the Stokes theorem again, we find∫
C
A′ =

∫
C′
A =

∫
R3

A ∧ dA′ = L(C,C ′). (7)

Since L(C,C ′) is a topological invariant, smooth deformations of C which leave it in R3\C ′
should not change its value. This is possible if and only if dA′|R3\C′ = 0. If A′ is exact, then
L(C,C ′) = 0, and so a nontrivial case is when A′ is a closed 1-form which is not exact.
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C1 C2

Figure 1. The Hopf link.

As an example with the first order linking, consider the Hopf link (Rolfsen, 1990; Kauffman,
2001) in Fig. 1. We use the singular gauge (5) to compute

L(C1, C2) =

∫
R3

dA1 ∧A2 = 1. (8)

This follows since we can choose C1∩S2 = P , where P is a point. The first order non-self linking
is L̃1(C,C) = 2. For C = ∪1≤i≤NCi, we find

L1(C,C) =
∑
i,j

L(Ci, Cj), (9)

which is in agreement with results in Refs. (Polyakov, 1988; Witten, 1989).

4. Second order fields
Suppose {Ci}1≤i≤N are disjoint closed curves in R3 and let Fi = dAi be dual to Ci. We now
construct a dual set (Cij , Fij) of the second order which satisfies∫

Cij

B =

∫
R3

B ∧ Fij (10)

for any 1-form B and i 6= j. Since B is arbitrary, it follows that suppFij = Cij . The most
general 2-form which can be expressed in terms of Ai and Aj is

Fij = fidAj − fjdAi + gAi ∧Aj , (11)

where fi, fj and g are arbitrary functions. In order for Fij to be closed, the functions have
to satisfy certain conditions. A requirement dFij |R3\(Ci∪Cj) = 0 gives dg|R3\(Ci∪Cj) = 0 and
without loss of generality we set g = 1. Requirements dFij |Ci = 0 and dFij |Cj = 0 then give

(dfj −Aj)|Ci = 0, (12)

(dfi −Ai)|Cj = 0. (13)

Integrating these conditions, we find a constraint L(Ci, Cj) = 0. This means that the second
order field associated with a pair of closed curves can be defined only if the curves are unlinked.

Since dFij = 0, there exists a 1-form Aij such that Fij = dAij . We seek a solution in the
form

Aij = 1
2(γiAj − γjAi). (14)

1 We assume that values of appropriate quantities vanish at infinity, so there is no contribution from boundary
terms. Boundary terms also vanish if we use S3 instead of R3.
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From a requirement Fij = dAij , the unknown functions γi and γj are found to satisfy

(dγi −Ai)|R3\(Ci∪Cj) = 0, (15)

dγi|Ci = 0, (16)

(dγi − 2Ai)|Cj = 0, (17)

(γi − 2fi)|Cj = 0 (18)

and the same expressions with i and j interchanged. This implies γi|R3\(∪kCk) =
∫

Γi
Ai, where

Γi is a curve in R3\(∪kCk); this means γi is a nonlocal quantity. If Si∩Cj = ∅, then dγi|Cj = 0,

and so γi|Cj is a constant. If Si ∩ Cj 6= ∅, then Si ∩ Sj = ∪m
(
Si ∩ Sj

)
(m)

, where m labels

disjoint segments of the intersection; for an example, see Fig. 2. Let Cj(m) be the segment

Ci

Cj

Cj(1) Cj(2)

Figure 2. An example of the construction of the second order curve Cij . Two components of
Cij are drawn with thick lines. Si is a disk bounded by Ci, and the thick line segments in this
disk are two disjoint segments of Si ∩ Sj .

of Cj which closes the curve
(
Si ∩ Sj

)
(m)

and agrees with its orientation; this closed curve is

Cij(m) = Cj(m) ∪
(
Si ∩ Sj

)
(m)

. We define C ′j = ∪mCj(m) and its complement in Cj is C ′′j . It

follows from the above relations that γi|C′
j

and γi|C′′
j

are constants such that γi|C′
j
− γi|C′′

j
= 2.

Without loss of generality, we set γi|C′
j

= 2 and γi|C′′
j

= 0. Using the definition of Fij , the

duality condition now becomes∫
Cij

B = −
∫
C′

i

B +

∫
C′

j

B +

∫
Si∩Sj

B. (19)

This implies Cij = C ′i
−1 ∪ C ′j ∪

(
Si ∩ Sj

)
, which agrees with suppFij = Cij . See Fig. 2 for an

example of the above construction. The Stokes theorem gives∫
Sij

dA =

∫
M
dA ∧Aij , (20)

where a surface Sij is such that ∂Sij = Cij . This means suppAij = Sij .
The above construction requires L(Ci, Cj) = 0. Since the curves Ci and Cj are unlinked, the

surfaces Si and Sj can be chosen to be disjoint, in which case dAij |R3\(Ci∪Cj) = 0. One can
similarly proceed to construct higher order fields. For example, if L(Cij , Ck) = 0 for all (i, j, k),
then we can define the third order 1-forms Aijk. In particular, they satisfy

dAijk|R3\(Ci∪Cj∪Ck) = (Ai ∧Ajk +Aij ∧Ak)|R3\(Ci∪Cj∪Ck) (21)
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for i 6= j 6= k.
If all linkings of order q, where 1 ≤ q ≤ p − 1, vanish, then we can similarly construct dual

sets (CIp , dAIp), where Ip = (i1, i2, . . . , ip). The quantities dAIp are related to what is known in
algebraic topology as the Massey products of cohomology groups (Massey, 1959, 1968; Kraines,
1966; O’Neill, 1979; Fenn, 1983); see also Refs. (Monastyrsky & Retakh, 1986; Berger, 1990).

As an example with second order linking, consider the Borromean rings (Rolfsen, 1990;
Kauffman, 2001) in Fig. 3. We use the singular gauge to compute

C1 C2

C3

Figure 3. The Borromean rings.

L(Ci, Cj) =

∫
R3

dAi ∧Aj = 0 (22)

for i 6= j. This follows since we can choose Ci ∩ Sj = ∅ for i 6= j. We take C = C1 ∪ C2 ∪ C3

and find that the first order non-self linking vanishes,

L̃1(C,C) = 2L(C1, C2) + 2L(C2, C3) + 2L(C3, C1) = 0. (23)

We define the second order curves {Cij} for i 6= j. Again we use the singular gauge to
compute

L(Cij , Ck) =

∫
R3

Ai ∧Aj ∧Ak − 1
2

∫
Ci

γjAk + 1
2

∫
Cj

γiAk = εijk, (24)

where (i, j, k) is a permutation of (1, 2, 3). The integral over R3 equals εijk since we can choose
S1 ∩ S2 ∩ S3 = P , where P is a point. The integrals over Ci and Cj vanish since we can choose
Sk such that Ci ∩ Sk = ∅ and Cj ∩ Sk = ∅. Similarly,

L̃(Cij , Cj) =

∫
R3

Ai ∧Aj ∧Aj − 1
2

∫
Ci

γjAj + 1
2

∫
Cj

γiAj = 0 (25)

for any i 6= j. We take C = C1 ∪ C2 ∪ C3 ∪ C12 ∪ C23 ∪ C31 and find that the second order
non-self linking of C is

L̃2(C,C) = 2L(C12, C3) + 2L(C23, C1) + 2L(C31, C2) = 6. (26)
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C1

C2

Figure 4. The Whitehead link.

As an example with the third order linking, consider the Whitehead link (Rolfsen, 1990;
Kauffman, 2001; Monastyrsky & Retakh, 1986) in Fig. 4. We use the singular gauge to compute

L(C1, C2) =

∫
R3

dA1 ∧A2 = 0. (27)

This follows since we can choose C1 ∩ S2 = P1 ∪ P2, where P1 and P2 are points at which
the contributions of dA1 ∧ A2 to the integral cancel due to the opposite orientations. We take
C = C1 ∪ C2 and find that the first order non-self linking vanishes, L̃1(C,C) = 0.

We define the second order curve C12 and use the singular gauge to compute

L(C12, Ck) =

∫
R3

A1 ∧A2 ∧Ak − 1
2

∫
C1

γ2Ak + 1
2

∫
C2

γ1Ak = 0 (28)

for k = 1 or k = 2. We take C = C1 ∪ C2 ∪ C12 and find that the second order non-self linking
vanishes, L̃2(C,C) = 0.

We use the singular gauge to compute the third order self linking,

L(C12, C12) =

∫
R3

A1 ∧A2 ∧A12 = 2. (29)

This follows since S12 is the union of disks S12(1) and S12(2) such that S12(1) ∩S12(2) = P , where
P is a point, and we can choose S1 and S2 such that S1 ∩ S2 ∩ S12 = P .

We define the third order curves C121 and C212. We use the singular gauge to compute

L(C121, C2) =

∫
R3

(A1 ∧A21 +A12 ∧A1) ∧A2 = 2

∫
R3

A1 ∧A2 ∧A12 = 4 (30)

and similarly L(C212, C1) = 4. We take C = C1 ∪C2 ∪C12 ∪C121 ∪C212 and find that the third
order non-self linking of C is

L̃3(C,C) = 2L(C121, C2) + 2L(C212, C1) = 16. (31)

5. Path integral
We want to construct a field theory for which expectation values of observables are topological
invariants of various orders. For this we need to specify the action and the observables. We
choose the Chern-Simons action,

S(B) =

∫
R3

B ∧ dB, (32)
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since it has all the necessary topological properties (Witten, 1989). First, it does not depend on
the choice of metric. Second, it can be related to linking numbers in the following way. Suppose
Γα is a closed curve on which dB takes a constant value dBα. (In order for Γα to be closed,
we may need to identify points at infinity by considering S3 instead of R3. We also avoid field
configurations with sources, such as monopoles.) Since a union of curves Γ = ∪αΓα densely fills
R3, an arbitrary 1-form B can be written as B =

∑
αBα. The action becomes

S(B) =
∑
α,β

L(Γα,Γβ), (33)

and so (apart from the choice of measure for Γ) we interpret it as the self-linking L(Γ,Γ) of the
set of closed field lines of dB.

If C = ∪αCα is a union of disjoint closed curves, then an integral
∫
C B is invariant with

respect to deformations of C if and only if dB = 0. Since dB = 0 is the classical equation of
motion for S(B), the integral is a topological observable (at least in the semiclassical limit).
Proceeding as above, we find ∫

C
B =

∑
α,β

L(Γα, Cβ), (34)

which we interpret as the linking L(Γ, C) of the sets of closed field lines of dB with C. Since
the measure in the path integral is exp (iS(B)), it is convenient to consider as an observable a
Wilson loop operator

W (C,B) = exp
(
i

∫
C
B
)
. (35)

We thus need to compute the expectation value

Z(C) =

∫
DB exp (iS(B))W (C,B). (36)

Using duality, this becomes

Z(C) =

∫
DB exp

(
i

∫
R3

B ∧ d(B +A)

)
, (37)

where dA is dual to C. The change of the variable B = B′− 1
2A gives four terms in the exponent.

One term corresponds to the path integral of the measure without a Wilson loop, Z(∅), the two
mixed terms combine into a boundary term, and the forth is the linking invariant. Ignoring the
boundary term, we find

Z(C) = Z(∅) exp
(
−1

4 i(L(C,C))
)
. (38)

A product of Wilson loop operators can be written as a single Wilson loop operator for the
union of the corresponding loops,∏

p

∏
Ip

W (CIp , B) = W (C,B), (39)

where C = ∪p ∪Ip CIp and CIp is a curve of order p. It follows that

L(C,C) =
∑
p,q

∑
Ip,Jq

L(CIp , CJq). (40)
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Here L(CIp , CJq) is the first order linking of curves CIp and CJq . This quantity can also be
interpreted as a linking of order p+ q− 1 of the curves {Ci}1≤i≤N . In general, L(C,C) is a sum
of linkings of various orders,

L(C,C) =
∑
r

Lr(C,C), (41)

where the expressions for several lowest order terms are

L1(C,C) =
∑
i,j

L(Ci, Cj), (42)

L2(C,C) =
∑
i,j,k

L(Cij , Ck), (43)

L3(C,C) = L3,1(C,C) + L3,2(C,C), (44)

L3,1(C,C) =
∑
i,j,k,l

L(Cijk, Cl), (45)

L3,2(C,C) =
∑
i,j,k,l

L(Cij , Ckl). (46)

6. Conclusions
In Chern-Simons theory the first order (Gaussian) linking of two curves C1 and C2 associated
with the 1-forms A1 and A2 can be ascribed to the topological properties of the expectation
value of the associated Wilson lines. Here we have generalized this idea to the case of higher
order linking. First, if C1 and C2 are unlinked, then we can define a new second order 1-form
A12 via Eq. (14). Unlike C1 and C2, the associated curve C12 is not fixed in space, but is however
sufficient for our topological needs, which are to investigate its linking with other curves, since
this property is invariant. If, for instance, we have a third curve C3 unlinked with both C1 and
C2, but linked with C12, then we find nonzero second order linking, i.e., a nonvanishing second
order topological invariant. The Borromean rings is the simplest topological configuration for
which this invariant is nonzero. The argument generalizes to higher order invariants. The
Whitehead link is the simplest example with a nonvanishing third order topological invariant.
For curves {Ci}1≤i≤N , with no linking of orders 1, 2, . . . , p − 1 and nonzero linking of order p,
the general results are obtained from the path integral of the expectation value of a product of
Wilson loop operators which depend on curves of order p in the Chern-Simons gauge theory.
One could apply these results to the investigation of higher order link polynomials.

Acknowledgments
We are grateful to the Isaac Newton institute for hospitality. RVB thanks Chapman University
for support. The work of TWK was supported by U.S. DoE grant number DE-FG05-85ER40226
and Vanderbilt University College of Arts and Sciences.

References
Berger, M. A. 1990 Third-order link integrals. J. Phys. A: Math. Gen. 23, 2787.

Buniy, R. V. & Kephart, T. W. 2006 Higher order topological invariants from the Chern-
Simons action. ArXiv:hep-th/0611336.

Buniy, R. V. & Kephart, T. W. 2008a A proposal for detecting second order topological
quantum phase. Phys. Lett. A372, 2583–2586.

Buniy, R. V. & Kephart, T. W. 2008b Higher order topological actions. Phys. Lett. A372,
4775–4778.

Flux in QCS IOP Publishing
Journal of Physics: Conference Series 544 (2014) 012014 doi:10.1088/1742-6596/544/1/012014

8



Fenn, R. A. 1983 Techniques of Geometric Topology. Cambridge University Press,
Cambridge.

Griffiths, P. & Harris, J. 1978 Principles of Algebraic Geometry. Wiley-Interscience,
New York.

Guadagnini, E., Martellini, M. & Mintchev, M. 1989 Perturbative Aspects of the Chern-
Simons Field Theory. Phys. Lett. B227, 111.

Hatcher, A. 2002 Algebraic Topology. Cambridge University Press, Cambridge.

Kauffman, L. 2001 Knots and Physics. World Scientific, Singapore.

Kraines, D. 1966 Massey higher products. Trans. Amer. Math. Soc. 124, 431.

Massey, W. S. 1959 Some higher order cohomology operations. In Symp. Int. Topologia
Algebraica, p. 145. Mexico.

Massey, W. S. 1968 Higher order linking numbers. In Proc. Conf. on Algebraic Topology , p.
174. University of Illinois at Chicago.

Monastyrsky, M. I. & Retakh, V. S. 1986 Topology of defects in condensed matter.
Commun. Math. Phys. 103, 445.

O’Neill, E. J. 1979 Higher order Massey products and links. Trans. Amer. Math. Soc. 248,
37.

Polyakov, A. M. 1988 Fermi-Bose Transmutations Induced by Gauge Fields. Mod. Phys. Lett.
A3, 325.

Rolfsen, D. 1990 Knots and Links. Publish or Parish, Houston.

Witten, E. 1989 Quantum Field Theory and the Jones Polynomial. Commun. Math. Phys.
121, 351.

Flux in QCS IOP Publishing
Journal of Physics: Conference Series 544 (2014) 012014 doi:10.1088/1742-6596/544/1/012014

9


