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Abstract. It is now becoming necessary to access the global magnetic structure of the solar
low corona at a large scale in order to understand its physics and more particularly the
conditions of energization of the magnetic fields and the multiple connections between distant
active regions (ARs) which may trigger eruptive events in an almost coordinated way. Various
vector magnetographs, either on board spacecraft or ground-based, currently allow to obtain
vector synoptic maps, composite magnetograms made of multiple interactive ARs, and full disk
magnetograms. We present a method recently developed for reconstructing the global solar
coronal magnetic field as a nonlinear force-free magnetic field in spherical geometry, generalizing
our previous results in Cartesian geometry. This method is implemented in the new code
XTRAPOLS, which thus appears as an extension of our active region scale code XTRAPOL.
We apply our method by performing a reconstruction at a specific time for which we dispose of
a set of composite data constituted of a vector magnetogram provided by SDO/HMI, embedded
in a larger full disk vector magnetogram provided by the same instrument, finally embedded in
a synoptic map provided by SOLIS. It turns out to be possible to access the large scale structure
of the corona and its energetic contents, and also the AR scale, at which we recover the presence
of a twisted flux rope in equilibrium.

1. Introduction
The problem of the reconstruction of the solar coronal magnetic field from photospheric boundary
data has been a very active topic of research in recent years due to the arrival of high resolution
and low noise vector magnetographs either on the ground, such as THEMIS and SOLIS, or
on board present solar missions, such as HINODE and SDO/HMI, and future ones, such as
EST and SOLAR-ORBITER. We refer the reader to Aly & Amari (2007) and Wiegelmann &
Sakurai (2012) for a review of all existing reconstruction methods. We just recall here for the
purpose of this Paper that the main methods proposed so far are the optimisation methods
(Wiegelmann, 2004), which use all photospheric data and try to minimize a cost function
measuring the difference between the computed transverse field and the measured one, the
magnetohydrodynamic relaxation methods (Valori et al., 2005), and the Grad-Rubin methods
(Sakurai, 1981; Amari et al., 1999; Inhester & Wiegelmann, 2006; Wheatland, 2007). Recently
Amari et al. (2006) presented two methods that attempt to solve the Grad-Rubin Boundary
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Value Problem (BVP), namely XTRAPOL and FEMQ, the former based on a finite difference
approximation and the latter on a finite element approximation.

Most of these methods have addressed the active region (AR) scale and have thus used the
Cartesian geometry framework in which Sun’s curvature is neglected. Such an approximation,
however, becomes invalid when one attempts to understand the large scale coronal structures
and their dynamics (Mackay & Yeates, 2012). With the arrival of SOLIS and SDO/HMI, it
is possible to obtain composite high resolution vector magnetograms made of several active
regions, or embedded in a full disk vector magnetogram and/or synoptic vector magnetograms.
Furthermore vector magnetic fields are also measured on the whole surface of many stars with
different techniques, although at a lower resolution and with less accuracy (Donati et al., 2007).

This raises the issue of building up reconstruction models at global scale. Extension of the
Cartesian models to spherical ones has thus recently become an important question, and actually
such an extension has already been done in the optimization methods settings (Wiegelmann,
2007). It must be noted that, either for full disk or for synoptic maps, strong constraints
on spatial resolution are imposed due to the fact that ARs represent only a small fraction of
the Sun’s surface. Therefore neither uniform nor non-uniform structured meshes can fit such
structures in an optimal way.

In the present Paper, we present a new code, XTRAPOLS, that allows the reconstruction
of the nonlinear force-free field in the exterior of a spherical region. This code is based on the
iterative Grad-Rubin scheme that we have already implemented in Cartesian geometry (Amari
et al., 2006) and is now implemented in spherical coordinates. We favor this approach because
it corresponds to a well-posed BVP. Moreover it has already proved to be quite efficient in the
previously considered Cartesian context, and has allowed us to obtain significant quantitative
results when applied to observational data (Bleybel et al., 2002; Régnier et al., 2002; Régnier
& Amari, 2004; Régnier et al., 2005; DeRosa et al., 2009; Canou et al., 2009; Canou & Amari,
2010; Petrie et al., 2011).

XTRAPOLS is a massively parallel code, and as such it is able to handle the large amounts
of data currently provided by vector magnetographs, with fields being measured on a very large
scale and with a very high resolution. We apply this code to the reconstruction of the global
coronal field at some particular date, using as boundary conditions a composite data set obtained
by using vector magnetograms provided by SDO/HMI at both the AR scale and the full disk
scale, and a SOLIS synoptic map on the rest of the Sun. We show that the model allows to
determine both the large scale structure of the corona and the small scale structure of an AR.
In particular, we find the presence of a twisted flux rope in equilibrium, which can possibly
be responsible for the energization of the AR and the subsequent occurrence of a large scale
eruptive event. More details on the computational method and the testing of the code can be
found in Amari et al. (2013)., which was submitted for publication after the ICMS Workshop.

2. Method
2.1. The continuous BVP
In the theoretical model we consider, the corona and the photosphere are represented by a
domain Ω that is the exterior of a sphere rather than the half-space D = {z > 0} considered
previously. This model thus differs from the previously developed Ω is assumed to be filled up
with a low beta plasma embedded in a magnetic field B that is taken to be force-free and to
decrease sufficiently fast to zero at infinity. Therefore, it does obey the equations

∇×B = αB , (1)

∇ ·B = 0 . (2)

It results at once from Eqs. (1)-(2) that the function α satisfies the constraint

B ·∇α = 0 , (3)
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which merely states that α keeps a constant value along any field line.
The set of equations (1)-(3) has a mixed elliptic-hyperbolic structure. Basically, it can be

decomposed into an elliptic part for B (Eqs. (1)-(2) with α given), and an hyperbolic part for
α (Eq. (3) with B given). To solve for the elliptic part, one should give the normal component
Bn of the magnetic field on ∂Ω, while to solve for the hyperbolic one, Eq. (3) indicates that the
value of α should be given on the part ∂Ω+ of ∂Ω where Bn > 0, say. This leads us to consider
the BVP first introduced by Grad & Rubin (1958). It consists of Eqs. (1)-(3) along with the
boundary conditions

Bn|∂Ω = b0 , (4)

α|∂Ω+ = α0 , (5)

where b0 and α0 are two given regular functions, and the asymptotic condition

lim
|r|→∞

|B| = 0 . (6)

In the numerical practice we consider the bounded domain Ωb = {r0 < r < r1}, limited by the
spherical surfaces S0 = {r = r0} (the photosphere) and S1 = {r = r1}, instead of the unbounded
domain Ω. Then the asymptotic condition (6) is no longer relevant and the boundary conditions
(4)-(5) are imposed on the whole ∂Ωb.

2.2. Principle of the Iterative Grad-Rubin method
In the Grad-Rubin method, the BVP above is solved iteratively, with its elliptic and hyperbolic
parts being considered in turn at each step. More precisely, we look for a sequence (B(n), α(n))
solution of

B(n).∇α(n) = 0 in Ωb , (7)

α(n)|∂Ω+
b

= α0 , (8)

and

∇×B(n+1) = α(n)B(n) in Ωb , (9)

∇ ·B(n+1) = 0 in Ωb , (10)

B(n+1)
r |∂Ωb

= b0 . (11)

The iteration process is initialized by choosing for B(0) the potential field with the normal
component b0, i.e., the unique solution of

∇×B(0) = 0 in Ωb, (12)

B(0)
r |∂Ωb

= b0 . (13)

A fundamental property of our method is that it is well-posed – in particular it is stable with
respect to changes in the boundary conditions. This makes a major difference with the methods,
recalled above, that use the three components of the photospheric field as boundary conditions:
as there is most generally no exact force-free solutions matching such conditions, these methods
have to deal with ill-posedness. Another point is worth noticing. In the Grad-Rubin BVP one
fixes the values of α in only one polarity. The values of α in the other polarity are obtained
by computing the solution, and do not match the observed values α0. Then reversing the role
of the two polarities leads to a different solution. A unique solution for which the computed
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α is as close as possible to the observed α0 on the whole S can however be obtained by using
the recently proposed Grad-Rubin-Optimization-Method (Amari & Aly, 2010). The idea is to
impose, at each iteration step, the value of α on a line to be a weighted average of the values
of α0 at its two footprints. This new approach has been shown to give good and robust results,
but we shall not use it here.

The previous scheme is implemented in spherical coordinates, using a numerical method
which is able to run on massively parallel computers. This is required if we want to deal in an
efficient way with the large amount of data provided by the observations.

To address the ∇ · B = 0 constraint, XTRAPOLS introduces a vector potential A(n) and
ensures that the iterated numerical field B(n) = ∇×A(n). To determine A(n) in a unique way,
we impose the gauge conditions

∇ ·A(n) = 0 in Ωb, (14)

A
(n)
t = Aπt on ∂Ωb, (15)

where Xt denotes the component of X tangent to the boundary and Aπ is a specific vector
potential of the current-free field Bπ, i.e.,

Bπ = ∇×Aπ. (16)

Aπ is required to satisfy the gauge conditions

Aπr(r, θ, ϕ) = 0, (17)

∇·Aπ(r0, θ, ϕ) = 0, (18)

which implies that ∇·Aπ = 0 in Ωb. To compute Aπ on the boundary: (i) We introduce
a scalar potential χπ(r, θ, ϕ) such that Aπ = ∇χπ × r̂ in Ωb. (ii) We impose χ(r0, θ, ϕ) to
be the unique solution with zero average value of the equation −∇2

⊥χ = Br on S0. Solving this
equation determines Aπ on S0. (iii) We introduce the standard representation Bπ = ∇ψπ, and
compute the scalar potential ψπ by solving Laplace equation −∇2ψπ = 0 in Ωb along with the
boundary condition ∂rψπ = Br on S0 ∪ S1. (iv) χπ is thus given by

χπ(r, θ, ϕ) = χπ(r0, θ, ϕ) +

∫ r

r0

ψπ(r′, θ, ϕ) dr′, (19)

from which we get Aπ on S1.
In our vector potential formulation, α is determined by solving

∇×A(n).∇α(n) = 0 in Ωb , (20)

α(n)|∂Ω+
b

= α0 , (21)

which is just a rewriting of Eqs. (7)-(8). The boundary value of α is thus directly imposed at
each iterative step, rather than being progressively increased to its nominal value through a
second iterative loop as was done in Amari et al. (1999). In other words, we keep only the
inner Grad-Rubin iteration loop in the two-level iteration procedure used in the latter paper.

Eqs. (20)-(21) are solved by the method of characteristics. The characteristic X(s, r) passing
through the point r ∈ Ωb is a solution of (Amari et al., 1999, 2006)

X′ = B(X) , (22)

X(0) = r , (23)
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Figure 1. Reconstruction of the test field. We have drawn a set of field lines of the exact Low-
Lou solution (top), one of the potential (current-free) field (middle), and one of the solution
computed with our algorithm with a resolution of 80× 160× 320 (bottom).
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Figure 2. Set of field lines of the reconstructed global solar force-free magnetic field. The
calculation is done with resolution 171×251×363 and use AR scale and full disk magnetograms
from SDO/HMI, and synoptic map from SOLIS.

where the prime symbol stands for differentiation with respect to the parameter s running along
that curve. Then for any node rh ∈ Ωb at which α is defined, one gets αh as

α(rh) = α0(X+(rh)) , (24)

where X+(rh) is the intersection of {X(r; s) : s < 0} with ∂Ω+
b . Since α0 is known at nodes

that do not in general coincide with X+(rh), we use an interpolation from their four nearest
neighbors.

We define the location of α on the cell vertices. We use either a high order Adams-Bashforth
integration scheme with adaptive step size or a 4th order Runge Kutta scheme, which also
allows us to capture accurately the ending point of the characteristics defining the limits of the
computational box. As already discussed in Cartesian geometry (Amari & Aly, 2010), it is
possible to have at the k-th iteration of the scheme some field lines that do not intersect the
part of the photospheric boundary where Br > 0 but emerge from the upper boundary. In that
case we set

α(k)(r) = α0(X−(r)). (25)

Our convergence criterion for the sequence of fields B(n) is chosen to be

|| B(n+1) −B(n) ||L2(Ωb)

|| B(n) ||L2(Ωb)

< ε , (26)

with ε = 10−6. We found that a total number of iterations of about 30−50 is sufficient to achieve
convergence in most cases, and the stopping criteria is robust with respect to changes in the
data put as boundary conditions. Compared to the Cartesian version, to solve the hyperbolic
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problem we need to use at a given point in the domain a mapping from spherical to Cartesian
coordinates while going back along a characteristic. The algorithm presented is parallel for both
the Elliptic and the Hyperbolic problems (only with one global field for the latter). We use
domain decomposition with the MPI interface on our staggered mesh.

3. Application to a semi analytic case
We have applied successfully our solver to the reconstruction of the nonlinear force-free Low-Lou
solution (Low & Lou, 1990). In an auxiliary spherical coordinate system (r′, θ′, ϕ′) centered at
O′, this axisymmetric field has the representation

B = ∇A× ϕ̂′

r′ sin θ′
+ F

ϕ̂′

r′ sin θ′
, (27)

with the poloidal flux function A(r′, θ′) and current function F (r′, θ′) being given by, respectively,

A(r′, θ′) =
P (µ′)

(r′)n
, (28)

F (r′, θ′) = aA1+1/n = a
P 1+1/n(µ′)

(r′)n+1
. (29)

Here µ′ = cos θ′, and P is a solution of a nonlinear ordinary differential equation satisfying
P (±1) = 0.

For testing our numerical procedure with an asymmetric field depending on the three
coordinates r, θ, ϕ, we introduce the solution having the quadrupolar structure and the
“stretching parameter” n = 1 into our model by imposing its axis of symmetry O′z′ to coincide

with the axis Oz of our main frame, with the center O′ being located at the position
−−→
OO′ = dẑ.

We take for d the value selected by Wiegelmann (2007), who has already used this shifting
procedure, thus making it possible to compare his results with ours.

Table 1 shows some of the diagnostics, often called figures of merit, already used for Cartesian
coordinates calculations in Amari et al. (1999, 2006) and in Schrijver et al. (2006), to
which we refer for precise definitions. The various quantities are evaluated for u equal to the
exact solution and v equal to the numerical solution obtained with XTRAPOLS. They have to
be compared with the reference values V C(u,u) = CS(u,u) = 1, NV E(u,u) = MVE(u,u) =
0, εM = 1. We also found important to report estimates of ∇·B, as well as the CPU time, both
figures providing additional measures of the quality of the solution.

Table 1. Various error diagnostics allowing to evaluate the quality of the test field
reconstructions performed with XTRAPOLS for three numerical resolutions:

RESOLUTION VC CS NVE MVE εM || divB ||L∞ Time
20× 40× 80 0.9972 0.9980 0.0696 0.0783 1.008 1.53510−13 61s
40× 80× 160 0.9983 0.9985 0.0650 0.0610 1.002 1.278 10−12 800s
80× 160× 320 0.9992 0.9993 0.0612 0.0587 1.001 1.18410−12 10077s

As shown on Fig. 1 the field lines of the numerically computed nonlinear force-free
configuration are very similar to those of the exact solution. Note that they are quite far
from those of the potential (current-free) field.

Flux in QCS IOP Publishing
Journal of Physics: Conference Series 544 (2014) 012012 doi:10.1088/1742-6596/544/1/012012

7



Figure 3. Structure at AR scale of the global solution shown in Figure 1. A twisted flux rope
in equilibrium is neatly seen to be present.

4. Application to a composite magnetogram (SDO/HMI-SOLIS)
We have applied our method to the determination of the full Sun coronal magnetic configuration
of February 14, 2011, 22:00 UT, using a composite magnetogram provided by two instruments.
We give here only a preliminary account of our results, which are explained in details in a
forthcoming paper.

During the first half of February 2011, the disk was characterized by the presence of the AR
11158, which was the sit of a very strong eruptive activity involving a CME and an X-class flare
on February 15 at 01:40 UT. For our reconstruction with XTRAPOLS, we use as boundary
conditions a vector magnetogram provided by SDO/HMI, embedded in a larger full disk vector
magnetogram provided by the same instrument, finally embedded in a synoptic map provided
by SOLIS. We also used a special processing, and set the current to zero but in the vicinity
of AR 11158, where the accuracy of our mesh was high enough to take it into account. The
calculations are done with a numerical resolution of 120x200x340 in spherical coordinates.

The solution allows us to catch the large scale magnetic structure (see Fig. 2), as well as the
smaller AR scale (see Fig. 3). The structure of the AR can be very precisely characterized and
one may note the presence of a twisted flux rope in equilibrium. This rope is possibly responsible
for the energization of the AR and it may have stored the large amount of free magnetic energy
that was later the source of the large scale eruptive event.
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