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Abstract. We propose Lorentz-covariant generalizations of the magnetic helicity and Beltrami
equation. The gauge invariance, variational principle, conserved current, energy-momentum
tensor and choice of boundary conditions elucidate the subject. In particular, we prove that
any extremal of the Maxwell action functional 1

4

∫
Ω
FµνF

µν d4x subject to the local constraint

εµναβFµνFαβ = 0 satisfies the covariant Beltrami equation.

1. Introduction
The introduction of the concept of magnetic helicity (Woltier, 1958; Moffatt, 1969, 1985)
revolutionized our understanding of plasma physics phenomena, from dynamos (Moffatt, 1978)
to the solar wind, to the operation of controlled fusion devices (Marsh, 1996; Bellan, 2000, 2006),
and it plays a central role when applied to a variety of concepts such as the Beltrami equation
and force-free fields in the form of Taylor states (Taylor, 1974, 1986). Helicity was introduced
in a three-dimensional context, but we find it useful to express it covariantly (Carter, 1978;
Bekenstein, 1987). We propose and explore a covariantization of the Beltrami equation, and
in particular study its relation to helicity conservation. For instance, new terms can arise that
vanish in the non-relativistic case, but which can contribute when we have a multi-component
helicity system where the components are moving with relativistic velocities with respect to each
other. This could be the case for helicity in relativistic plasmas (Lichnerowicz, 1967) ejected
from astrophysical objects colliding with another plasma clouds (Goedbloed et al., 2010), but
it can also apply in particle physics to the hadronization process where relativistic flux tubes
interact (Casher et al., 1979; Neuberger, 1979; Casher et al., 1980; Buniy & Kephart, 2003, 2005;
Buniy et al., 2014) or to the early universe as it cools through various epochs.

2. Non-covariant case
We first briefly review the three-dimensional Beltrami equation and helicity.

Consider a region Ω ⊂ R3 and let (x,∇) be the Cartesian coordinates and the derivative
operator in Ω. A vector field B in Ω is called a Beltrami vector field if it satisfies

B × (∇×B) = 0, (1)

where × is the vector product in R3. Eq. (1) implies that the vectors ∇×B and B are parallel,
which leads to the Beltrami equation

∇×B = λB, (2)
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where λ is a scalar function in Ω.
Eq. (2) shows that Beltrami fields are eigenfields of the curl operator. Eigenfields of the curl

operator can be related to more familiar functions by using the identity

∇×∇×B = ∇(∇ ·B)−∆B, (3)

where · is the scalar product and ∆ is the Laplace operator in R3. It follows that the square of
the curl operator, when restricted to the space of divergence-free vector fields, is the negative
of the Laplace operator −∆. Thus, in some sense, the curl operator is the square root of the
operator −∆ (which itself is a positive operator).

The restriction to the space of divergence-free vector fields is not accidental, but is required by
physical considerations of B being a magnetic field. In such a case, the divergence-free condition
∇ ·B = 0 for B in (2) implies

B · ∇λ = 0, (4)

so that λ is constant along any field line of B. Eq. (4) is the consistency condition for (2).
According to the Beltrami equation (2), the Maxwell current J = ∇ × B is parallel to the
magnetic field, J = λB. Note that the current conservation ∇ · J = 0 also implies (4).

To learn more about a Beltrami field B, it is instructive to consider a vector potential A such
that B = ∇ × A. Since a vector potential is defined only up to the gradient of an arbitrary
function, it will be important to ensure gauge invariance of various physical quantities under a
gauge transformation

A 7→ A+∇g, (5)

where g is an arbitrary real-valued function in Ω. The two simplest such gauge invariant
quantities are the energy W and helicity H of the field B in the region Ω,

W =

∫
Ω

1
2‖B‖

2 d3x, (6)

H =

∫
Ω
A ·B d3x, (7)

where ‖ ‖ is the scalar norm in R3.
Convergence of the integrals in (6) and (7) imposes certain restrictions on A and B. We

are concerned here with the case of a non-compact Ω and restrictions derived from the required
behavior of A and B for ‖x‖ → ∞. In such a case, the integral in (7) converges if

A = O(‖x‖p), ‖x‖ → ∞, p < −1. (8)

This leads to B = O(‖x‖p−1), ‖x‖ → ∞, which means that allowed field configurations do not
include magnetic monopoles. It follows that the integral in (6) also converges for such fields.

The gauge invariance of the energy is obvious, while the corresponding gauge transformation
of the helicity is

H 7→ H +

∫
∂Ω
g(n ·B)d2σ, (9)

where ∂Ω is the boundary of Ω, n is the unit normal vector to ∂Ω, and d2σ is the area differential
on ∂Ω. Since we require gauge invariance of H, we set the boundary condition

(n ·B)|∂Ω = 0, (10)
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which means that the field lines do not cross the boundary. For a non-compact Ω, the asymptotic
behavior B = O(‖x‖p−1), ‖x‖ → ∞ ensures the gauge invariance of H as well since the boundary
integral in (9) vanishes.

The helicity is often conserved in physical systems involving magnetic fields, and this restricts
their dynamics. For example, suppose that B is a field in Ω satisfying the boundary condition
(10) which minimizes its energy W and conserves its helicity H. The resulting variational
problem is equivalent to finding B minimizing the functional

W − 1
2λH =

∫
Ω
Ld3x (11)

with the Lagrangian

L = 1
2‖B‖

2 − 1
2λA ·B. (12)

(We have chosen the form of the Lagrange multiplier λ which leads to the conventional form of
the Beltrami equation.) For an infinitesimal variation of the vector potential δA, we find

δL = (∇×B − λB) · δA+∇ ·
[
(−B + 1

2λA)× δA
]
, (13)

which leads to

δ(W − 1
2λH) =

∫
Ω

(∇×B − λB) · δAd3x+

∫
∂Ω
n ·
[
(−B + 1

2λA)× δA
]
d2σ. (14)

We eliminate the boundary term in (14) by setting the boundary condition

δA|∂Ω = 0. (15)

The variation (14) vanishes for any δA satisfying (15) if and only if ∇ × B = λB. Thus, a
Beltrami field with λ = const is a stationary point of the energy functional W subject to the
condition H = const. It can be further proved that such a field is a local minimum of W with
constant H.

Another aspect of the helicity relates to the conserved Noether current. Gauge
transformations are the symmetry operations of the theory defined by the Lagrangian L. The
proof of the invariance of the theory requires showing (without using the equation of motion)
that L is changed only by the divergence term. (For the following derivation we assume λ is
constant.) Indeed, for a gauge transformation (5) with δA = ∇g, (13) becomes

δL = ∇ · Γ, (16)

Γ = −1
2λgB. (17)

On the other hand, using the equation of motion we find

δL = ∇ ·
(

∂L

∂∇Ak
δAk

)
. (18)

Equating (16) and (18), we arrive at the conserved Noether current (∇ · j = 0),

j =
∂L

∂∇Ak
δAk − Γ, (19)

j = (−B + 1
2λA)×∇g + 1

2λgB. (20)
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Since the gauge function g is arbitrary, we can define another conserved Noether current k by

gk = j +∇×
[
(−B + 1

2λA)g
]
. (21)

and find

k = −∇×B + λB. (22)

Now the Beltrami equation (2) gives k = 0, so that the Noether current associated with the
helicity, λB, equals the Maxwell current J = ∇×B. As expected, there is only one independent
conserved current in the problem.

Computing the Noether energy-momentum tensor

θij =
∂L

∂(∇iAk)
∇jAk − δijL

= (Bl − 1
2λAl)ε

lik∇jAk − δij
(

1
2‖B‖

2 − 1
2λA ·B

)
, (23)

we find that its divergence

∇iθij = (−∇×B + λB)k∇jAk (24)

vanishes for any solution of the Beltrami equation (2), which implies the conservation equation
∇iθij = 0.

We now derive the lower bound for the energy in terms of helicity and constant λ (Arnold &
Khesin, 1978). We first integrate the Beltrami equation (2) once to obtain

∇×A = λA+∇ϕ, (25)

where ϕ is an arbitrary scalar function in Ω. We can now use the gauge transformation (5) with
g = −λ−1ϕ to replace (25) with

∇×A = λA, (26)

which is of the same form as (2). Hence in this gauge B = λA, which gives

W = 1
2λH. (27)

Although (26) is not gauge invariant, its consequence, (27), is gauge invariant. We conclude
that the minimal value of the variational functional W − 1

2λH equals zero for any solution of
the Beltrami equation with constant λ.

The field satisfying B = λA saturates the lower bound for the energy in terms of helicity
(Arnold & Khesin, 1978). To derive this, we consider a non-local operator curl−1 acting on the
space of divergence-free vector fields. We use the Schwarz inequality∣∣∣∣∫

Ω
B · curl−1B d3x

∣∣∣∣ ≤ [∫
Ω
‖B‖2 d3x

]1/2[∫
Ω
‖curl−1B‖2 d3x

]1/2

(28)

and the Poincaré inequality ∫
Ω
‖curl−1B‖2 d3x ≤ C−2

∫
Ω
‖B‖2 d3x, (29)
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where C > 0 is a certain constant depending on Ω. Combination of the two inequalities gives
W ≥ 1

2C |H|. Finally, using the Rayleigh min-max theorem

B · curl−1B ≤ |µ|max ‖B‖
2, (30)

where

|µ|max = max
a
|µa|, (31)

curl−1Ba = µaBa, (32)

we see that we can use C = 2 |µ|−1
max and find

W ≥ 1
2 |µ|

−1
max |H| . (33)

It is clear that the field satisfying B = λA saturates the bound (33) since in this case we have
|µ|−1

max = |λ| and W = 1
2 |λ| |H|.

3. Covariant case
The proceeding non-covariant analysis is sufficient for the description of magnetic fields in
nonrelativistic plasmas. Generalizations to the electric case have been carried out (Ranada, 1989)
and applied (Irvine & Bouwmeester, 2008; Arrayas & Trueba, 2012), but relativistic plasmas
require a full covariant analysis. In particular, this applies to Beltrami fields and helicity.

To derive the covariant forms of equations obtained in the preceding section (Buniy &
Kephart, 2014), we consider Lorentzian (R1,3,Ω, x,∇), where R1,3 has a constant pseudo-
Riemannian metric with signature (1, 3) and Ω = [t1, t2] × Ω′, Ω′ ⊂ R3. The magnetic field
B is now a part of the gauge field strength tensor Fµν . Using

Bi = 1
2εijkF

jk, (34)

we first write (1), (2), (4) in the form

Fi
j∇kFjk = 0, (35)

∇jFij = 1
2λεijkF

jk, (36)

εijkFjk∇iλ = 0, (37)

then setting

Ei = Fi0, (38)

ε0ijk = εijk, (39)

λ0 = λ, (40)

we arrive at the covariant form of (35), (36), (37),

Fα
µ∇νFµν = 0, (41)

∇νFµν = 1
2εµναβλ

νFαβ, (42)

εµναβFαβ∇µλν = 0. (43)

These covariant expressions require that we identify non-covariant λ with the time component
of a 4-vector λµ. Note that the left-hand side of (43) vanishes identically if we set

∇µλν −∇νλµ = 0, (44)
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The requirement (44) will appear later in the variational formulation of the problem.
Similarly to (2) implying (4) and (4) not implying (2) for ∇ · B = 0, we have (42) implying

(43) and (43) not implying (42). However, although (1) and (2) are equivalent, their covariant
counterparts (41) and (42) are not equivalent; in fact, none of the two implies the other.

In terms of the E and B fields, the time and space components of (41) become

E · ∇0E − E · (∇×B) = 0, (45)

E(∇ · E) +B × (∇0E)−B × (∇×B) = 0, (46)

the time and space components of (42) become

−∇ · E = λ ·B, (47)

−∇0E +∇×B = λ0B + λ× E, (48)

and (43) becomes

−B · ∇λ0 +B · ∇0λ+ E × (∇× λ) = 0. (49)

Note that the left-hand side of (49) vanishes identically if we set ∇λ0−∇0λ = 0 and ∇×λ = 0,
which combine to give (44).

A consistency condition is required for compatibility of (41) and (42) for arbitrary λ. Indeed,
combining these equations, we find

F γµεµναβλ
νFαβ = 0. (50)

Considering the values γ = 0 and γ = i in (50), yields λ0E ·B = 0 and λiE ·B = 0, respectively.
This requires the same consistency condition E · B = 0 for each values of γ, which we write in
the covariant form

εµναβFµνFαβ = 0. (51)

We could have arrived at the consistency condition E · B = 0 also by noting that it is an
appropriate covariant form of the three-dimensional constraint E = 0.

The covariant analogue of the energy W is the negative of the Maxwell action

W =

∫
Ω

1
4FµνF

µνd4x,

=

∫
Ω

(
−1

2‖E‖
2 + 1

2‖B‖
2
)
d4x, (52)

(We have introduced the sign difference in the definition of W so that the non-covariant W is a
limiting case of the covariant W .) As a covariant form of the helicity H, we propose

H(f) = −
∫

Ω

1
2ε
µναβ(∇µf)AνFαβ d

4x

=

∫
Ω

1
2

[
(∇0f)(A ·B)−A0(B · ∇f)−∇f · (A× E)

]
d4x, (53)

where f is an arbitrary scalar function in Ω. (It will become clear in what follows why in (53)
we use λµ = ∇µf instead of a general λµ.)

For a non-compact Ω, the integral in (53) converges if

A = O(‖x‖p), ‖x‖ → ∞, p < −1− 1
2q, (54)
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where we assumed

f = O(‖x‖q), ‖x‖ → ∞ (55)

for a certain q. Since F = O(‖x‖p−1), ‖x‖ → ∞, the integral in (52) now converges for p < −1.
Our definition (53) is motivated by the following limiting case of covariant helicity H(f).

Suppose Ω = [t1, t2]× Ω′, where Ω′ ⊂ R3, and f is a function of x0 = t only. It follows that

H(f) =

∫ t2

t1

H ′(t)(∂f/∂t)dt, (56)

where H ′(t) is the non-covariant helicity of the vector potential Ai(t, x). In particular, for the
conserved non-covariant helicity H ′, we find

H(f) = [f(t2)− f(t1)]H ′, (57)

More generally, for an arbitrary f , (53) implies

H(f) = H̃(f)−
∫
∂Ω

1
2ε
µναβfAνFαβ d

3σµ, (58)

H̃(f) =

∫
Ω

1
4ε
µναβfFµνFαβ d

4x, (59)

which means that H(f) is a boundary term when consistency condition (51) is satisfied.
Under a gauge transformation

Aµ 7→ Aµ +∇µg, (60)

where g is an arbitrary real-valued function in Ω, the gauge invariance of W is obvious, while
the corresponding gauge transformation of the helicity is

H(f) 7→ H(f) +

∫
∂Ω

1
2ε
µναβ(∇νf)gFαβ d

3σµ. (61)

Since we require gauge invariance of H(f), we set[
εµναβnµ(∇νf)Fαβ

]
∂Ω

= 0, (62)

where n is the 4-vector normal to ∂Ω. Using now (42) with λµ = ∇µf , we find

(nµ∇νFµν)∂Ω = 0, (63)

which is a covariant version of the boundary condition (10). For a non-compact Ω, the asymptotic
behavior F = O(‖x‖p−1), ‖x‖ → ∞ ensures the gauge invariance of H(f) as well, since the
boundary integral in (61) vanishes.

In terms of the E and B fields, the boundary condition (63) becomes

[−n0(∇f ·B) + (∇0f)(n ·B) + n · (∇f × E)]∂Ω = 0. (64)

In particular, for time-like and space-like hypersurface ∂Ω we have

(∇f ·B)∂Ω = 0 for time-like ∂Ω, (65)

[(∇0f)(n ·B) + n · (∇f × E)]∂Ω = 0 for space-like ∂Ω. (66)

We further emphasize the choice of the definition (53) by the following theorem.
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Theorem 1. Any extremal of the action functional W =
∫

Ω
1
4FµνF

µνd4x subject to the

constraint εµναβFµνFαβ = 0 and the boundary condition δA|∂Ω = 0 satisfies the covariant
Beltrami equation ∇νFµν = 1

2εµναβλ
νFαβ for λµ = ∇µf , where f = f(x) is an arbitrary

function.

Proof. Any extremal of (52) subject to the local constraint (51) must be an extremal of the
functional W − 1

2H̃(f), where f(x) is a space-time dependent Lagrange multiplier (Elsgolc,
1961; Akhiezer, 1962). For an arbitrary variation of the gauge potential δA, we find

δ(W − 1
2H̃(f)) =

∫
Ω

[
−(∇µFµν) + 1

2ε
µναβ(∇µf)Fαβ

]
δAν d

4x

+

∫
∂Ω

(Fµν − 1
2ε
µναβfFαβ)δAν d

3σµ. (67)

Using the boundary condition

δA|∂Ω = 0, (68)

we arrive at (42) with λµ = ∇µf , which proves the theorem.

Note that λµ = ∇µf derived in the proof implies (44), which we have already seen as a
sufficient condition for (43) to be satisfied identically.

We now consider the covariant version of the conserved Noether current (Jackiw, 1985).
Equations (11), (12), (16), (19), (20), (22) become

W − 1
2H̃(f) =

∫
Ω
L(f) d4x, (69)

L(f) = 1
4FµνF

µν − 1
8ε
µναβfFµνFαβ, (70)

δL(f) = 0, (71)

jµ(f) =
∂L(f)

∂∇µAν
δAν , (72)

jµ(f) =
(
Fµν − 1

2ε
µναβfFαβ

)
∇νg, (73)

kµ(f) = −∇νFµν + 1
2ε
µναβ(∇νf)Fαβ. (74)

Now using the Beltrami equation (42), we find kµ(f) = 0, so that the Noether current associated
with the helicity, 1

2ε
µναβ(∇νf)Fαβ, equals the negative of the Maxwell current Jµ = −∇νFµν .

As expected, there is only one independent conserved current in the problem.
The Noether energy-momentum tensor is

θµν(f) =
∂L(f)

∂(∇µAσ)
∇νAσ − δµνL(f),

= (Fµσ − 1
2fε

µσαβFαβ)∇νAσ − δµν(1
4FαβF

αβ − 1
8ε
αβγδfFαβFγδ) (75)

and the corresponding energy-momentum 4-vector is

Pν(f) =

∫
Ω′
θ0
ν(f) d3x, (76)

P0(f) = −
∫

Ω′

(
1
2‖E‖

2 + 1
2‖B‖

2
)
d3x+

∫
∂Ω′

n · (E + fB)A0 d
2σ, (77)
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Pi(f) = −
∫

Ω′
(E ×B)i d

3x+

∫
∂Ω′

n · (E + fB)Ai d
2σ, (78)

where we assumed Ω = [t1, t2]× Ω′, Ω′ ⊂ R3. We set the boundary condition

n · (E + fB)|∂Ω′ = 0 (79)

and obtain the relation Pν(f) = Pν(0) which is consitent with L(f) − L(0) being a topological
term. Also note that although θµν(f) is not gauge invariant, the resulting Pν(f) is.

To prove conservation of θµν(f), we need to use the Beltrami equation. Indeed, in the
expression

∇µθµν(f) =
(
(∇µFµσ)− 1

2ε
µσαβ(∇µf)Fαβ

)
∇νAσ + 1

8ε
αβγδ(∇νf)FαβFγδ, (80)

the first term on the right-hand side vanishes for any solution of (42) and the second term
vanishes due to the constraint (51). Since (51) follows from (42), we conclude that the
conservation equation ∇µθµν(f) = 0 holds for any solution of the Beltrami equation.

It is straightforward to carry out this analysis for non-abelian fields. See (Buniy & Kephart,
2014), where our results are also conveniently expressed in terms of differential forms.

4. Conclusions
We have generalized the magnetic helicity and Beltrami equation to the relativistic form. In
the process, we discussed various interconnected features associated with this generalization. In
particular, we found that the helicity is related to the Chern-Simons action and can also be
viewed as a constraint requiring the vanishing of a generalized instanton term.

Besides its theoretical appeal, the covariant formulation of the magnetic helicity and Beltrami
equation has an experimental advantage as well. It turns out that, for an ideal nonrelativistic
plasma, charges flow until the electric field is completely shorted out. In the relativistic case,
even for an ideal plasma, however, the current flow may not be able to keep up, and so the
electric fields do not necessarily always vanish. Some possible applications of our results for the
relativistic generalization of the Beltrami equation may be found for dynamos inside millisecond
pulsars, pulsar and quasar atmospheres, collisions of plasma shock waves with other shocks or
gas clouds and nuclear fusion via laser confinement.

Explicit solutions of the covariant Beltrami equation are of particular interest for applications,
and we will address these elsewhere.
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