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Abstract. With the acceptance of QCD as the fundamental theory of strong interactions,
one of the basic problems in the analysis of nuclear phenomena became how to consistently
account for the effects of the underlying quark/gluon structure of nucleons and nuclei. Besides
providing more detailed understanding of conventional nuclear physics, QCD may also point to
novel phenomena accessible by new or upgraded nuclear experimental facilities. We discuss a
few interesting applications of QCD to nuclear physics with an emphasis on the hidden color
degrees of freedom.

1. Introduction
The 12 GeV upgrade of the continuous electron beam accelerator facility (CEBAF) in Jefferson
Laboratory (JLab) provides an opportunity to investigate novel nuclear phenomena predicted
by QCD. In particular, a JLab collaboration proposed to measure the deuteron tensor structure
function which may provide a probe of exotic QCD effects due to hidden color in a six-quark
configuration[1]. It is also interesting to note the recent measurements of electron scattering
from high-momentum nucleons in nuclei performed at Hall C(E02-019) in JLab[2], which may
allow for an improved determination of the strength of two- and three-nucleon short-range
correlations for several nuclei. This result may indicate the existence of hidden color in multi-
quark configurations. These new developments in experimental facilities motivate us to discuss
a number of applications of QCD to nuclear physics which is the main concern of nuclear
chromodynamics (NCD)[3]. Its goal is to give a fundamental description of nuclear dynamics
and nuclear properties in terms of quark and gluon fields at short distance, and to obtain a
synthesis at long distances with the normal nucleon, isobar, and meson degrees of freedom.
NCD provides an important testing ground for coherent effects in QCD and nuclear effects at
the interface between perturbative and non-perturbative dynamics.

NCD may imply in some cases a breakdown of traditional nuclear-physics concepts. For
example, one can identify where off-shell effects modify traditional nuclear physics-formulas,
such as the impulse approximation for elastic nuclear form factors. At high momentum transfer,
nuclear amplitudes are predicted to have a power-law fall off in QCD in contrast to the Gaussian
or exponential fall off usually assumed in nuclear physics.

In QCD, the fundamental degrees of freedom of nuclei as well as hadrons are postulated
to be the spin-l/2 quark and spin-1 gluon quanta. Nuclear systems are identified as color-
singlet composites of quark and gluon fields, beginning with the six-quark Fock component of
the deuteron. An immediate consequence is that nuclear states are a mixture of several color
representations which cannot be described solely in terms of the conventional nucleon, meson,
and isobar degrees of freedom: there must also exist hidden-color multi-quark wave-function
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components, i.e., nuclear states which are not separable at large distances into the usual color-
singlet nucleon clusters.

Because of color confinement, one may expect that virtually any color-singlet hadronic
configuration of quarks and gluons can form either bound states or resonances as discussed
in a recent paper by Bashkanov, Brodsky and Clement[4]. Color confinement can lead to qq̄qq̄
tetraquark systems[5, 6] such as the charged Zc(3900)[7, 8] and possibly qqqqq̄ pentaquark states1

in addition to the familiar qq̄ mesons, qqq baryons, the gg and ggg glueball states[9], as well as
nuclei. Recently, the LHCb collaboration has collected a strong enough signal to declare that
Z(4430) is a bona fide particle[10], which joins other exotic particles, such as Zc(3900). The
quark content of Z(4430) as well as Zc(3900) posed a puzzle: its decay implied it contained a
charm quark and anticharm, while its charge required two more quarks (a down and anti-up, for
example)-giving a total of four2. The LHCb experiment at CERN in Geneva, which is primarily
set up to study bottom-quark physics in the LHCs proton-proton collisions, has collected 25,000
relevant B0 decays at energies of 7 and 8 TeVs. This sample is a factor of 10 larger than the
data sets of Belle and BaBar. The analysis by the LHCb collaboration shows a highly significant
signal (about 14 standard deviations above background) that removes any doubt that Z(4430)
is a real particle. The team also confirms that the particle has a spin of 1 and a positive parity,
which rules out the interpretation of the particle signatures as merely arising from a pair of
(two-quark) D mesons. The only remaining explanation appears that Z(4430) is a bound state
of four quarks.

As described in Ref.[4], mesonic nuclei[11, 12, 13, 14, 15, 16, 17] and nuclear-bound
quarkonium[18, 19, 20] are also possible. Resonances in the q̄q̄q̄qqq channel just below the BB̄
threshold could explain the anomalously large rates[21] seen in e+e− → pp̄, nn̄,ΛΛ̄ at threshold.
The anomalously large transverse spin-spin correlation ANN observed in large-angle proton-
proton elastic scattering near the strangeness and charm thresholds[22] could be explained by the
effects of |uuduudQQ̄ > baryon number B = 2 resonances in the J = L = 1 pp s-channel[23, 24].

The possible mechanisms underlying confinement multiply as the number of quarks and gluon
constituents in a hadronic system increase. A key question is whether such states are bound by
fundamental QCD interactions or do the constituents always cluster as color-singlet subsystems?
In the case of nuclei, the quark constituents evidently cluster as color-singlet nucleons bound
by virtual meson exchange, the analog of covalent binding in molecular physics due to quark
interchange or exchange. When there are no covalence quarks in common, QCD also predicts
attractive multigluonic van der Waals forces which are due to glueball exchange. The attractive
QCD van der Waals potential leads to the prediction of bound states of heavy quarkonium to
heavy nuclei[18, 19, 25]. However, there are also rare configurations in which other multiquark
color configurations (hidden color [26, 27, 28]) can enter.

As an extreme example, one may expect a huge enhancement of hidden color degrees of
freedom in the neutron stars. They are extreme cases of rare isotopes naturally born after going
through the stellar explosion process. Neutron stars can be made in the aftermath of type II
supernovae explosions which result from the gravitational core collapse of massive stars. While
the masses of type II supernovae are greater than 8MΘ, where the solar mass MΘ = 2× 1033 g,
the masses of neutron stars are between one and two solar masses[29]. The radius of the netron
star is only about 10 km, while the radius of our sun is 6.96× 105 km. Thus, the central density
could reach as high as five to ten times of the normal nuclear density, ρ0 = 2.65× 1014 g cm−3.
For comparison, the solar density is only 1.4gcm−3. In such dense nuclei, it appears natural to
expect a large enhancement of the hidden color effect. The cooling mechanism of such neutron

1 The nomenclature qq̄ etc. refers to the lowest particle number Fock state of the hadronic eigensolution of the
QCD light-front Hamiltonian.
2 This was presented as one of the Synopses in the website http://physics.aps.org/synopsis-
for/10.1103/PhysRevLett.112.222002.
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stars has been the subject of numerous studies[30, 31, 32, 33, 35, 36, 37, 38, 39].
On the other hand, it was also claimed in the past that the concept of hidden color is just an

artifact of a certain technique of constructing group representations and therefore has no true
physical meaning[40]. To understand the main point of such claim, one may consider an example
of four-fermion spin system using the SU(2) group instead of jumping into the discussion of the
multi-quark color system with the SU(3) group. Consider a system of four spin-1/2 particles
and try to find the totally spin-neutral (or spin-singlet) system. If the four-particle system
is represented by the two clusters of the two-particle system, then there are two independent
representations which provide the totally spin-neutral system: i.e.

|Singlet I〉1234 = 1 3
2 4

= |Singlet〉12|Singlet〉34, (1)

|Singlet II〉1234 = 1 2
3 4

= |Triplet〉12|Triplet〉34

= (2|Singlet〉13|Singlet〉24 − |Singlet〉12|Singlet〉34)/
√

3.

The key point of the claim in Ref.[40] is that the representation of |Singlet II〉1234 originally
expressed as the product of the two triplet-states can be rewritten as a combination of the
entirely singlet products. One should note, however, that the required singlet clusters are not just
|Singlet〉12 and |Singlet〉34 but also |Singlet〉13 and |Singlet〉24 in order to express |Singlet II〉1234

in terms of only the singlet-states. In other words, the clustering should be modified in this
expression compared to the original clustering of the two triplet states and thus another degree
of freedom beyond the |Singlet〉12|Singlet〉34 is clearly necessary. The new degree of freedom
beyond the |Singlet〉12|Singlet〉34 is necessary no matter how one arranges the clustering. In
SU(3) color system, such new degrees of freedom beyond the original clustering of singlet-states
correspond to the hidden-color states and they are clearly necessary to express all the totally
color-singlet states of any multi-quark system beyond the ordinary meson and baryon systems.

In the next section, Section 2, we discuss the hidden-color degrees of freedom along with the
first-principle QCD evolution of multi-quark systems. In particular, we pay attention to the
six- and nine-quark hidden-color configurations and show how fast the number of hidden-color
degrees of freedom increases as the number of quarks increase. In Section 3, we review the work
by Bashkanov, Brodsky and Clement[4] for the recent observation of a hadronic resonance d∗

in the proton-neutron system with isospin I = 0 and spin-parity JP = 3+ which raises the
possibility of producing other novel six-quark dibaryon configurations allowed by QCD. The
width and decay properties of such six-quark resonances could be regarded as manifestations of
hidden-color six-quark configurations. Finally, in Section 4 we discuss one of the basic problems
in the analysis of nuclear scattering amplitudes, namely how to consistently account for the
effects of the underlying quark/gluon component structure of nucleons. We review the idea of
the reduced nuclear amplitudes and discuss its application to the coherent pion photoproduction
on the deuteron. Summary and conclusions follow in Section 6.

2. Multiquark Evolution in QCD and Hidden Color Degrees of Freedom
The short-distance behavior of multi-quark wave functions can be systematically computed in
pQCD. A simple illustration may be found in Ref. [27], where the wave function of a four-
quark color-singlet bound state in SU(2)C has been analyzed as an analogue to the six-quark
problem in SU(3)C . The QCD evolution equation was solved for the multi-quark distribution
amplitude at short distances in the basis of completely anti-symmetrized quark representations.
The eigensolutions of the evolution kernel correspond to a spectrum of candidate states of
the relativistic multi-quark system. The four-quark antisymmetric representations are then
connected to the eigensolutions to the physical two-cluster basis of SU(2)C dibaryon (NN ,
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N∆, ∆∆) and hidden-color (CC) components. It provides constraints on the effective nuclear
potential between two clusters. Anomalous states are also found in the spectrum which cannot
exist without substantial hidden-color degrees of freedom.

As technical details are presented in Ref. [27], a given four-quark antisymmetric representation
(A) can be decomposed onto two clusters (A1 ⊗A2) using the following steps:

(i) Represent the four-quark antisymmetric representation as an inner product form A =
C × T × S ×O.

(ii) Decompose each four-quark representation C, T, S, and O as an outer product of 2 two-quark
representations using fractional parentage coefficients, e.g., C = C1 ⊗ C2.

(iii) Recombine the representations as an inner product: A = (C1 ⊗ C2) × (T1 ⊗ T2) × (S1 ⊗
S2)× (O1 ⊗O2).

(iv) Commute the order of inner product and outer product, gathering together representations
of the same cluster: A = (C1 × T1 × S1 ×O1)⊗ (C2 × T2 × S2 ×O2) ≡ A1 ⊗A2.

(v) It is sufficient to consider only the coefficient of the symmetric orbitals O1 and O2 to classify
the clusters such as NN , N∆ and ∆∆.

With this method, the four-quark eigensolutions can be expanded on the physical basis of
effective clusters which are the analogs of the NN , ∆∆, N∆, and CC states in QCD. By
analyzing the behavior of φ(xi, Q) at large Q, one can predict the effective potential between
two clusters. For example, it was found that one of the hidden-color states has a large projection
on the eigensolution with leading anomalous dimension (dominant at short distances), whereas
the states analogous to NN and ∆∆ in QCD have an almost negligible leading component.
This implies that the effective potential tends to be repulsive between color-singlet clusters and
attractive between colored clusters at short distance. Two other types of four-quark states
were also found in SU(2)C , which cannot be identified with dibaryon degrees of freedom. One
of these states has equal NN , ∆∆ and CC components. The other state is an anomalous
hidden-color two-cluster system orthogonal to the usual hidden-color state which has the unusual
feature that it has very small projection on the eigensolutions which dominate at short distance,
i.e., the effective potential between the colorful clusters of the anomalous hidden-color state
tends to be repulsive. One may speculate that the analogous anomalous states in QCD could
be quasistable non-nucleonic nuclear systems, possibly related to the anomalous phenomena
apparently observed in nuclear collisions [41, 42, 43, 44]. These results also give some support
to the conjecture that multi-quark hidden-color components exist in ordinary nuclei [43].

The results in Ref. [27] represented a first attempt to extract exact results for the composition
and interactions of multi-quark nuclear systems at short distances. Although just the four-quark
bound state in SU(2)C was analyzed in Ref. [27] for simplicity, many of the derived properties
were indeed extended to six-quark states in QCD as discussed in Ref. [28]. In particular, since the
leading eigensolution at high-momentum transfer has 80% hidden-color probability, we expect
a transition of the ordinary nuclear state to non-nucleonic degrees of freedom as one evolves
from long to short distances. The set of eigensolutions of the evolution equation represent
all the possible degrees of freedom of the multi-quark bound-state system since its kernel has
the same invariances and symmetries of the full QCD Hamiltonian. We thus expect that the
eigensolutions of the evolution kernel, which are dominantly hidden-color, to correspond to
actual states and excitations of ordinary nuclei. A careful experimental search for these exotic
resonances should be made. Possible channels where signals for such states may be observed
include Compton scattering and pion photo-production on a deuteron target at large angles, as
well as the electron scattering from high-momentum nucleons in nuclei.
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2.1. Six-Quark Evolution
Six-quark states can be classified by their symmetries under SU(3)C (color), SU(2)T (isospin),
SU(2)S (spin), and spatial symmetry. Since the physical states are color singlets, the Young

symmetry of the color-singlet states of the six-quark system is [222] or . Since three

colors are shared by six quarks, there are five independent color-singlet states corresponding
to five different Yamanouchi labels of [222] symmetry. The explicit representations of the five
independent color-singlet states and their correspondence to Yamanouchi labels are given in the
Appendix of Ref. [28].

Harvey[45, 46, 47] has classified the color-singlet six-quark states in terms of a physical
cluster decomposition. In this classification, the physical deuteron state (i.e., a bound state
of two color-singlet clusters) is represented as a linear combination of several different kinds
of totally antisymmetric color-singlet six-quark states. For example, the two well-separated
nucleons |NN〉 are given by

|NN〉 =
1

3
|[6]{33}〉+

2

3
|[42]{33}〉 − 2

3
|[42]{51}〉, (2)

where [] and {} represent the orbital and spin-isospin symmetry and color symmetry [222] is
abbreviated. Similarly, the two well-separated deltas |∆∆〉 and the hidden-color states |CC〉 are
given by

|∆∆〉 =

√
4

45
|[6]{33}〉+

√
16

45
|[42]{33}〉+

√
25

45
|[42]{51}〉, (3)

|CC〉 =

√
4

5
|[6]{33}〉 −

√
1

5
|[42]{33}〉, (4)

respectively.
Since this classification itself does not include the dynamics of strong interactions between

the constituents, the dynamical evolution equation of six-quark systems was formulated [28]
to include the dynamics between the quarks and solved to give the general form of the quark
distribution amplitude φd(xi, Q):

φd(xi, Q) = (CTS)φ(xi, Q), (5)

where (CTS) is a tensor representation obtained from the Young symmetry of SU(3)C , SU(2)T ,
and SU(2)S , and the orbital distribution amplitude is given by

φ(xi, Q) = x1x2x3x4x5x6

∞∑
n=0

anφ̃n(xi)

(
ln

(
Q2

Λ2

))−γn
. (6)

One may then project Eq. (2) to momentum space:

φNN (xi, Q) =
1

3
φ[6]{33}(xi, Q) +

2

3
φ[42]{33}(xi, Q)− 2

3
φ[42]{51}(xi, Q). (7)

In the limit Q → ∞, the dependence on Q is determined by the leading anomalous dimension;
all other terms which have nonleading anomalous dimensions are suppressed by logarithmic
damping factors. The orbital symmetry of the eigensolution which has the leading anomalous
dimension cannot be [42] but is [6]. This means only the first term of Eq. (7) survives at the large-
Q limit. The NN amplitude itself is not sufficient. One can show that an 80% hidden-color state
is necessary to saturate the normalization of the six-quark amplitude when six quarks approach
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the same position in impact space. One may call this new degree of freedom an anomalous
state since it does not correspond to the usual nucleonic degrees of freedom of the nucleus. The
physical implication of the anomalous state was discussed in the previous toy model analysis
[27].

The QCD predictions for high-Q behavior of the deuteron form factor and the form of the
deuteron distribution amplitude at short distances were presented in Ref. [26]. The fact that the
six-quark state is 80% hidden color at small transverse separation implies that the deuteron form
factors cannot be described at large Q by meson-nucleon degrees of freedom alone, and that the
nucleon-nucleon potential is repulsive at short distances. Since the basic scale of QCD, ΛQCD,
is phenomenologically of the order of a few hundred MeV or less, QCD predicts a transition
from the traditional meson and nucleon degrees of freedom of nuclear physics to quark and
gluon degrees of freedom at inter-nucleon separations of a fm or less. In this respect, it may
be important to realize the 12 GeV upgrade of JLab as a viable opportunity to investigate
novel nuclear phenomena predicted by QCD. As an example, a JLab collaboration proposed
to measure the deuteron tensor structure function b1[1]. This leading twist tensor structure
function of spin-1 hadrons provides a tool to study partonic effects, while also being sensitive
to coherent nuclear properties in the simplest nuclear system. Although shadowing effects are
expected to dominate this structure function at low values of the Bjorken scaling variable x,
it may provide a probe of exotic QCD effects due to hidden color in 6-quark configuration
at larger values of x. Since the deuteron wave function is relatively well known, any novel
effects are expected to be readily observable. An analysis including the hidden-color degrees
of freedom appeared recently[48]. Most available models predict a small or vanishing value of
b1 at moderate x. However, the first measurement of b1 at HERMES revealed a crossover to
an anomalously large negative value in the region 0.2 < x < 0.5, albeit with relatively large
experimental uncertainty. The proposal [1] describes an inclusive measurement of the deuteron
tensor asymmetry in the region 0.15 < x < 0.45, for 0.8 < Q2 < 5.0 GeV2. It might be possible
to determine b1 with sufficient precision to discriminate between conventional nuclear models,
and the more exotic behaviour which is hinted at by the HERMES data. This measurement
will provide access to the tensor quark polarization, and allow a test of the Close-Kumano sum
rule[49], which vanishes in the absence of tensor polarization of the quark sea.

2.2. Nine-Quark Color Singlets
In this subsection, we provide the counting of the number of hidden-color states in nine-quark
systems. It is well known that the baryon multiplets can be constructed from the three triplets
(quarks) in SU(3): i.e.,

⊗ ⊗ = ⊕ ⊕ ⊕ (8)

or
{3} ⊗ {3} ⊗ {3} = {10} ⊕ {8}S ⊕ {8}A ⊕ {1}. (9)

Applying it in the color degrees of freedom, i.e. SU(3)C , one can see that only one color singlet
appears in the three-quark system, or baryon. However, more color singlets independent of each
other can be formed as the number of quarks gets increased.

In the six-quark system such as deuteron, five color singlets are formed owing to the fact that
the three color degrees of freedom are shared by the six quarks in the system. In other words,
not only the singlet and singlet but also the octet and octet can form six-quark color-singlet
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bound-states. Similar to Eq. (8), one may explicitly get

⊗ ⊗ ⊗ ⊗ ⊗ = ⊕ 5

⊕ 9 ⊕ 15 ⊕ 16 ⊕ 5 ⊕ 5 (10)

or

{3} ⊗ {3} ⊗ {3} ⊗ {3} ⊗ {3} ⊗ {3} = 729

= {28} ⊕ 5{35} ⊕ 9{27} ⊕ 15{10} ⊕ 16{8} ⊕ 5{10∗} ⊕ 5{1}. (11)

Among the five color-singlet states in Eq. (11), just one of them stems from the two color-
singlet clusters of three-quark system such asN and ∆ while the remaining four states correspond
to the two color-octet clusters denoted as CC or hidden-color states.

Now, let’s count here how many hidden-color states are available in the nine-quark system
such as the 3He nucleus. Extending the same color algebra, we get

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = ⊕ 27

⊕ 8 ⊕ 48 ⊕ 42 ⊕ 105

⊕ 162 ⊕ 28 ⊕ 84 ⊕ 120

⊕ 168 ⊕ 42 (12)

or

{3} ⊗ {3} ⊗ {3} ⊗ {3} ⊗ {3} ⊗ {3} ⊗ {3} ⊗ {3} ⊗ {3} = 19683

= {55} ⊕ 27{81} ⊕ 8{80} ⊕ 48{64} ⊕ 42{35∗} ⊕ 105{35} ⊕ 162{27} ⊕ 28{28} ⊕ 84{10∗}
⊕ 120{10} ⊕ 168{8} ⊕ 42{1}. (13)

This shows a remarkable proliferation of the hidden color degrees of freedom in the nine-quark
system compare to the six-quark system[50], i.e. (42 − 1)/(5 − 1) = 41/4 > 10. Here3 we
find fourty-one hidden-color states in the nine-quark system since only one of the fourty-two
color-singlet states stem from the three color-singlet clusters of three-quark systems. Compared
to just four hidden-color states in the six-quark system, we now find more than an order of
magnitude increase of hidden-color states in the nine-quark system. It amounts to almost an
order of magnitude increase in the hidden-color sectors.

It is interesting to note the recent measurements of electron scattering from high-momentum
nucleons in nuclei performed at JLab Hall C(E02-019 )[2]. These data allowed for an improved
determination of the strength of two- and three-nucleon correlations for several nuclei, including

3 The number of color singlets can also be found from a specific combinatoric counting technique using Young
tableaux. The number of hidden-color degrees of freedom presented in Ref.[50] is corrected in this work.
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light nuclei where clustering effects can be examined. At x > 2, where three-nucleon short-
range correlations (3N-SRCs) are expected to dominate, their A/3He ratios were significantly
higher than the previous CLAS data and suggested that contributions from 3N-SRCs in heavy
nuclei are larger than previously believed. Interestingly, there were large differences between
the 4He/3He ratios from E02-019 (Q2 ≈ 2.9 GeV2) and those from CLAS (〈Q2〉 ≈ 1.6 GeV2 ).
If these results indeed indicate a large dependence on Q2 for the x > 2 plateau region, then it
might be associated with the dramatic increase of the hidden color degrees of freedom that we
found in the three-nucleon systems. It will be interesting to see if this ratio difference between
Hall C and CLAS is truly due to the Q2 difference between these two experiments. This may
be tested in the upcoming experiments to be performed after the 12 GeV upgrade in JLab.

3. Double Pionic Fusion and “ABC” Effect
Bashkanov, Brodsky and Clement[4] discussed the recent observation of a hadronic resonance
d∗ in the proton-neutron system with isospin I = 0 and spin-parity JP = 3+ and the possibility
of producing novel six-quark dibaryon configurations allowed by QCD. As Clement reviewed the
process of two-pion production in nucleon-nucleon collisions[51], it provides a suitable means
to study single as well as mutual nucleon excitations by the well-understood t-channel meson
exchange and gives access to study the mutual excitation of the colliding nucleons into their
first excited state, the ∆(1232), in great detail. The question of whether there are more
eigenstates in the system of two baryons than just the deuteron ground state has been a strong
motivation for this process from the perspective of quantum chromodynamics (QCD) since the
possible existence of so-called dibaryons was first envisaged by Jaffe[52]. Although the worldwide
dibaryon searches have met with no success so far, the two-pion production is of special interest
due to the possible detailed study of baryon-baryon excitations with particular emphasis on the
∆∆ system.

In particular, the purely isoscalar reaction channel pn→ dπ0π0 exhibits a narrow resonance-
like structure with m = 2.37 GeV and Γ = 70 MeV in the total cross section, which is correlated
with an intriguing low-mass enhancement in the ππ invariant mass spectrum known as the
ABC effect[53] as well as with the formation of a ∆∆ system in the intermediate state. From
the angular distributions, the spin and parity of this structure have been derived resulting in
I(JP ) = 0(3+). For this resonance-like structure to be the ground-state S-wave of the totally
antisymmetric six-quark system, it is inevitably represented by[28]

|(16) >CTSO=
1√
5

∑
YT

∑
YCS

ηT | YT >T | YCS >CS | [111111]O >O,

(14)
where YT is the allowed Yamanouchi label of isospin symmetry and the phase ηT = ±1 = (−1)YT

depends on whether YT is obtained from the Yamanouchi label with the indices in natural order
by an even or odd number of transpositions. Similarly, YCS is the allowed Yamanouchi label
of color-spin symmetry and [111111]O is the only allowed Yamanouchi label for the S-wave
orbital symmetry. As phrased long ago in terms of inevitable dibaryon[54], it is interesting to
note that an inevitable symmetry is consequential from a particular quantum number such as
I(JP ) = 0(3+).

Such inevitable symmetry in the process of pn→ d∗ → ∆∆→ dπ0π0 led to the conclusion[4]
that d∗ must be an unconventional origin, possibly indicating a genuine six-quark nature, since
the totally symmetric [6] orbital state corresponds to dominantly the “hidden color” state rather
than the “deltaron” state which has the [42] orbital symmetry. From Eqs.(2), (3) and (4), one
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may note that there are only two possible quark structures for an I(JP ) = 0(3+) resonance in
the two-baryon system given by[4]

|ψd∗〉 =

√
1

5
|∆∆〉+

√
4

5
|6Q〉 and

|ψd∗〉 =

√
4

5
|∆∆〉 −

√
1

5
|6Q〉, (15)

where ∆∆ means the asymptotic ∆∆ configuration and 6Q is the genuine hidden color six-quark
configuration. The first solution denotes a S6 quark structure (all six quarks in the S-shell),
or the totally symmetric [6] orbital state, and the second one a S4P 2 configuration (4 quarks
in the S-shell and 2 quarks in the P-shell), or the [42] orbital state. As discussed in Ref.[4],
since the quark structure with the large ∆∆ coupling would correspond to a “deltaron” state
and can be excluded, it may be natural to assign the observed d∗ resonance to the S6 six-quark
predominantly hidden color state, thus providing an explanation for its narrow decay width as
discussed in Ref.[4].

It is also interesting to note that such a resonance seems to couple with the anomalous
enhancement in the low-mass region of the ππ-invariant mass spectrum known as the ABC
effect[53] and the ∆∆ system could well serve as a doorway state to an exotic excitation as
discussed by Clement[51]. Such anomalous enhancement has been pointed out already more
than fifty years ago in p + d collisions[53]. In the reaction pd → 3HeX, an anomalous
enhancement in the low-mass region of the ππ-invariant mass spectrum was observed[55]. In
particular, the missing mass of the detected 3He ejectile that corresponds kinematically to the
production of a pion pair, i.e. X = ππ, exhibited an excess above phase space starting right
at threshold at low ππ-masses. In subsequent bubble-chamber[56, 57] and single-arm magnetic
spectrometer measurements[58, 59, 60, 61, 62, 63, 64], this enhancement was found in fusion
reactions leading to d, 3He and 4He, when an isoscalar pion pair was produced. However,
no enhancement was found in the fusion reaction to tritium, where an isovector pion pair was
produced. These results suggested that the effect only appears in double-pionic fusion reactions
in combination with the production of an isoscalar pion pair. In the absence of any consistent
explanation, this enhancement effect in the low-mass spectrum was coined as the ABC effect
following the initials of the authors of Ref.[53]. For a detailed understanding of the two-pion
production process in pp, pd and dd collisions systematic experimental studies were initiated in
the nineties at CELSIUS and continued later on at COSY[51]. According to Ref.[51], these
exclusive and kinematically complete high-statistics measurements have been carried out at the
detector installations PROMICE/WASA[65, 66, 67], CELSIUS/WASA[68, 69, 70, 71, 72, 73, 74],
COSY-TOF[75, 76], WASA-at-COSY[77, 78] and COSY-ANKE[79] covering the energy range
from the two-pion production threshold up to

√
s = 2.5 GeV (corresponding to a nucleon beam

energy of 1.4 GeV).
Since most of these experiments were done at beam energies, which energetically allow

the mutual excitation of two colliding nucleons into their first excited state, the ∆(1232)P33,
theoretical attempts were undertaken to understand the ABC effect by the excitation of a ∆∆
system via t-channel meson exchange between the two colliding nucleons or by variations of
this scenario[80, 81, 82, 83, 84]. Such calculations, indeed, predicted a low-mass enhancement,
however, always also a high-mass enhancement. Surprisingly enough, the inclusive single-
arm measurements at that time seemed to support such a high-mass enhancement. And it
was only recently that the first exclusive and kinematically complete measurements of solid
statistics[68, 77, 85, 86] over practically the full phase space revealed that the high-mass
enhancement observed in the single-arm measurements rather had resulted from other reactions
like 3π and η production[63]. However, the new generation of measurements confirmed the

1st Tensor Polarized Solid Target Workshop IOP Publishing
Journal of Physics: Conference Series 543 (2014) 012004 doi:10.1088/1742-6596/543/1/012004

9



existence of a very pronounced low-mass enhancement. More detailed discussion of the recent
theoretical calculations and the experimental strategies for definitive experimental confirmation
or exclusion can be found from Ref.[4]. Investigations of the basic double-pionic fusion in the
region of the ABC effect has also been discussed in contrast to the conventional fusion processes
in the primordial nucleosynthesis and those taking place in star burning[87].

4. Reduced Nuclear Amplitudes
One of the basic problems in the analysis of nuclear scattering amplitudes is how to consistently
account for the effects of the underlying quark/gluon component structure of nucleons.
Traditional methods based on the use of an effective nucleon/meson local Lagrangian field theory
are not really applicable, giving the wrong dynamical dependence in virtually every kinematic
variable for composite hadrons. The inclusion of ad hoc vertex form factors is unsatisfactory
since one must understand the off-shell dependence in each leg while retaining gauge invariance;
such methods have little predictive power. On the other hand, the explicit evaluation of
the multi-quark hard-scattering amplitudes needed to predict the normalization and angular
dependence for a nuclear process, even at the leading order of QCD coupling constant αs requires
the consideration of millions of Feynman diagrams. Beyond leading order one must include
contributions of non-valence Fock states wave functions, and a rapidly expanding number of
radiative corrections and loop diagrams. The reduced amplitude method[88], although not an
exact replacement for a full QCD calculation, provides a simple method for identifying the
dynamical effects of nuclear substructure, consistent with covariance, QCD scaling laws and
gauge invariance. The basic idea has already been introduced for the reduced deuteron form
factor. More generally, if the nuclear binding is neglected, then the light-cone nuclear wave-
function can be written as a cluster decomposition of collinear nucleons: ψq/A = ψN/AΠNΨq/N

where each nucleon has 1/A of the nuclear momentum. A large momentum transfer nucleon
amplitude then contains as a factor the probability amplitude for each nucleon to remain intact
after absorbing l/A of the respective nuclear momentum transfer. Each probability amplitude
can be identified with the respective nucleon form factor F (t̂i = 1

A2 tA), where tA is the square of
the transferred momentum to the nucleus with mass number A. Thus for any exclusive nuclear
scattering process, the reduced nuclear amplitude can be defined as

m =
M

ΠA
i=1FN (t̂i)

. (16)

The predictions of pQCD for pion photoproduction on the deuteron γD → π0D have been
given[89] at large momentum transfer using the reduced amplitude formalism. The cluster
decomposition of the deuteron wave function at small binding only allows the nuclear coherent
process to proceed if each nucleon absorbs an equal fraction of the overall momentum transfer.
Furthermore, each nucleon must scatter while remaining close to its mass shell. Thus, the
nuclear photoproduction amplitudeMγD→π0D(u, t) factorizes as a product of three factors: (1)
the nucleon photoproduction amplitude MγN1→π0N1

(u/4, t/4) at half of the overall momentum
transfer, (2) a nucleon form factor FN2(t/4) at half the overall momentum transfer, and (3) the
reduced deuteron form factor fd(t), which according to pQCD, has the same monopole fall-off
as a meson form factor. A comparison with the recent JLAB data for γD → π0D of Meekins
et al [90] and the available γp → π0p data [91, 92, 93, 94, 95] shows good agreement between
the pQCD prediction and experiment over a large range of momentum transfers and center-
of-mass angles. The reduced amplitude prediction is consistent with the constituent counting
rule p11

T MγD→π0D → F (θcm) at large momentum transfer. This is found to be consistent with
measurements for photon lab energies Eγ > 3 GeV at θcm = 90◦ and 136◦.

The predictions of QCD for nuclear reactions are most easily described in terms of light-front
(LF) wave functions defined at equal LF time τ = t+ z/c [96]. The deuteron eigenstate can be
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projected on the complete set of baryon number B = 2, isospin I = 0, spin J = 1, Jz = 0,±1
color-singlet eigenstates of the free QCD Hamiltonian, beginning with the six-quark Fock
states. Each Fock state is weighted by an amplitude which depends on the LF momentum
fractions xi = k+

i /p
+ and on the relative transverse momenta ~k⊥i. There are five different

linear combinations of six color-triplet quarks which make an overall color-singlet, only one
of which corresponds to the conventional proton and neutron three-quark clusters. Thus, the
QCD decomposition includes four six-quark unconventional states with “hidden color” [28].
Nevertheless, the cluster decomposition theorem [97] states that in the zero binding limit
(B.E. → 0), the LF wave function of the deuteron must reduce to a convolution of on-shell
color-singlet nucleon wave functions:

lim
B.E.→0

ψDuududd(xi,
~k⊥i, λi) =

∫ 1

0
dz

∫
d2`⊥ψ

d(z, `⊥)

×ψpuud(xi/z,~k⊥i + (xi/z)`⊥, λi) (17)

×ψnudd(xi/(1− z),~k⊥i − [xi/(1− z)]`⊥, λi),

where ψd(z, `⊥) is the reduced “body” LF wave function of the deuteron in terms of its nucleon
components. Applying this cluster decomposition to an exclusive process involving the deuteron,
one can derive a corresponding reduced nuclear amplitude (RNA) [26, 88, 98]. Moreover, at zero
binding, one may take ψd(z, `⊥)→ δ(z−mp/(mp+mn))×δ2(`⊥). In effect, each nucleon carries
half of the deuteron’s four-momentum.

Thus, in the weak nuclear binding limit, the deuteron form factor reduces to the overlap of

nucleon wave functions at half of the momentum transfer, and FD(Q2)→ fd(Q
2)F 2

N (Q
2

4 ) where
the reduced form factor fd(Q

2) is computed from the overlap of the reduced deuteron wave
functions [98]. The reduced deuteron form factor resembles that of a particle spin-one meson
form factor since its nucleonic substructure has been factored out. The pQCD predicts the
nominal scaling Q2fd(Q

2) ∼ const [26]. The measurements of the deuteron form factor show
that this scaling is in fact well satisfied at spacelike Q2 ≥ 1 GeV2 [99].

Considering a similar analysis of pion photoproduction on the deuteron γD → π0D at weak
binding, we obtained the reduced amplitude scaling [89]

MγD→π0D(u, t) = C ′fd(t)MγN1→π0N1
(u/4, t/4)FN2(t/4) , (18)

where the constant C ′ is expected to be close to unity. A comparison with elastic electron
scattering then yields the following proportionality of amplitude ratios:

MγD→π0D

MeD→eD
= C ′

Mγp→π0p

Mep→ep
. (19)

The new factored form, Eq. (18), differs significantly from the older reduced nuclear amplitude
factorization [88], for which

Molder
γD→π0D(u, t) ' mγd→π0d(u, t)F

2
N (t/4) . (20)

Here, mγd→π0d is the reduced amplitude; it scales the same as mγρ→π0ρ at fixed angles since the
nucleons of the reduced deuteron d are effectively point-like. The advantages of this reduction are
that some nonperturbative physics is included via the nucleon form factors and that systematic
extension to many nuclear processes is possible [88]. The new factorization given by Eq. (18)
is an improvement because it includes nonperturbative effects in the pion production process
itself.
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JLAB experimental data [90] on π0 photoproduction from a deuteron target, up to a photon
lab energy Elab = 4 GeV, were presented as an example inconsistent with both constituent-
counting rules (CCR) [100, 101] and old RNA [88] predictions. One potential explanation
for this disagreement has been odderon exchange [102, 103]. Because the odderon has zero
isospin and is odd under charge conjugation, such an exchange is allowed in the t channel of
π0 photoproduction. However, it is shown in Ref. [89] that the improved factorization given
by Eqs. (18) and (19) is in good agreement with the JLAB data [90] for γD → π0D and the
available γp → π0p data [91, 92, 93, 94, 95] as well as the existing eD → eD and ep → ep
data. There is thus no need to invoke any additional anomalous contribution to understand the
data [90].

5. Summary and Conclusion
In summary, we have indicated a few phenomena that go beyond what can be described in terms
of the baryon-meson picture of nuclear physics. We have stressed that if one accounts for the
substructure of hadrons in terms of quarks and gluons, new phenomena may occur.

We discussed[50] some ideas concerning a modification of the nucleon-meson picture of the
nuclear forces. The occurrence of colored multi-quark substructures in nuclei, was found to have
consequences for the understanding of the nucleon-nucleon potential at short distances, which
means distances of the same order of the size of the nucleons themselves. Two main points were
found: (i) the composite nature of the nucleons, which naturally leads to the idea of strong form
factors for the meson-nucleon vertices, can be used to estimate these form factors in the quark-
gluon picture, and (ii) the occurrence of “exotic” channels, say the colorless combination of two
colored clusters, CC, leads in a natural way to an energy-dependent effective, “optical”, potential
which incorporates the short-range effective repulsion that is responsible for the saturation of
the nuclear force as an effect of the leaking of the nucleon-nucleon channel into the CC channel.

Such multi-quark states must have their own evolution as discussed in Sec. 2. Combined
with the idea of reduced nuclear amplitudes, this work leads to predictions of the asymptotic
behavior of nuclear observables like electro-magnetic form factors, which can be and have been
tested in experiments. The deuteron tensor structure function b1 could be sensitive to hidden
color degrees of freedom at large x. The order of magnitude increase in the nine-quark hidden
color degrees of freedom may be behind the significant enhancement of the A/3He ratio as Q2

gets larger. Recent observation of d∗ resonance raises the possibility of producing other novel
color-singlet six-quark dibaryon configurations allowed by QCD as discussed in Sec. 3.

The link between the traditional nuclear physics and the quark-gluon picture may be provided
by the reduced nuclear amplitudes. An elaboration of this idea was given in Sec. 4.
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