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Abstract. The b1 deep-inelastic structure function is an observable feature of a spin-1 system
that is sensitive to non-nucleonic components of the target nuclear wave function. The
contributions of exchanged pions in the deuteron are estimated and found to be of measurable
size for values of x of about 0.1. A simple model for a hidden-color, six-quark configuration
(with only about 0.15% probability to exist in the deuteron) is proposed and found to give
substantial contributions for values of x greater than about 0.2. Good agreement with the only
existing (HERMES) data is obtained. Predictions are made for an upcoming JLab experiment.
The Close and Kumano sum rule is investigated and found to be a useful guide to understanding
various possible effects that may contribute.

1. Introduction
This conference proceeding is based entirely on previously published work [1].

Consider lepton-nucleus deep-inelastic scattering, with the direction of the photon as the spin
quantization axis. The cross section for an unpolarized lepton but polarized deuteron (D) target
depends on the value m of the magnetic quantum number of the target:

d2σ(m) ∝ lµνW (m)
µν , (1)

where lµν is the standard lepton tensor and

W (m)
µν =

∫
d4reiq·r〈D,J = 1, Jz = m|[jµ(r), jν(0)||D,J = 1, Jz = m〉. (2)

The standard structure function F1 is given by

F1(x) =
1

3

∑
m

W
(m)
11 , (3)

and we are interested in

b1(x) = W
(1)
11 −W

(0)
11 , (4)

with x as the Bjorken variable, and we ignore the Q2 dependence for simplicity. The function
b1 has been measured by the HERMES collaboration collaboration using a tensor polarized
deuteron target [2] for values of Bjorken 0.01 < x < 0.45. The function b1 takes on its largest

1st Tensor Polarized Solid Target Workshop IOP Publishing
Journal of Physics: Conference Series 543 (2014) 012002 doi:10.1088/1742-6596/543/1/012002

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



value of about 10−2 at the lowest measured value of x (0.012), decreases with increasing x
through zero and takes on a minimum value of roughly −4× 10−3.

The function b1 nearly vanishes if the spin-one target is made of constituents in a relative
s-state, and is very small for a target of spin 1/2 particles moving non-relativistically in higher
angular momentum states [3, 4]. Thus one expects [3] that a nuclear b1 may be dominated
by non-nucleonic components of the target nuclear wave function. Consequently, a Jefferson
Laboratory experiment [5] is planned to measure b1 for values of x in the range 0.16 < x < 0.49
and 1 < Q2 < 5 GeV2 with the aim of reducing the error bars.

2. General Remarks
The quark distribution function (related to F1) can be written as

q(m)(x) = 〈D,J = 1,m|O|D,J = 1,m〉. (5)

If q(m)(x) is to have any dependence on m, the operator O can not be scalar. The Wigner Eckart
theorem then dictates the O is a tensor of rank 1 or 2, if b1 is to be different from zero. But
invariance under parity says that q(1) = q(−1). Thus O can not be of rank 1 and give an non-zero
b1.

This means that O is a rank 2 tensor, so that b1 measures tensor effects. A consequence is
that the S wave component of the deuteron gives no contribution to b1 because the value of m
is not relevant. In general, the nucleon contributions do not give anything large enough to be
observable [3, 4].

3. Pionic Contribution
This contribution is detailed in [1], which displays the relevant figures. We summarize here. The
pionic contribution to b1 is given by

bπ1 (x) =
1

2

∫ 2

x

dy

y
qπ(x/y)δfπ(y), (6)

where

δfπ(y) ≡ f (0)π (y)− f (1)π (y) (7)

with

f (m)
π (yA) =

∫
dξ−

2π
e−iyAP

+
D ξ

−〈D,m|φπ(ξ−)φπ(0)|D,m〉c (8)

gives the probability for the pion to have a light cone momentum fraction of y. The function
qπ(x/y) is the quark distribution function of the pion.

The function δfπ(y) has some interesting properties. It is independent of the deuteron wave
function and has a double node structure which is a consequence of the tensor nature of b1.
Indeed, we find ∫ 2

0
dy
fabL(y)

y
= 0. (9)

The pionic effects on b1 are found to be substantial for x less than about 0.2, and for those
values of x are large enough to account for the HERMES data. See Table I and Fig. 3 of Ref. [1].
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Table 1. Measured values (in 10−2 units) of the tensor structure function b1. Both the
statistical and systematic uncertainties are listed. The numbers in parenthesis refer to the
structure function modes of Ref. [6] .

〈x〉 〈Q2〉 b1 ±δb1stat ±δb1sys bπ1 [7] bπ1 [6] (1) bπ1 [6] (3) b6q1
[GeV2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2] [10−2]

0.012 0.51 11.20 5.51 2.77 10.5 15.5 24.1 0.00
0.032 1.06 5.50 2.53 1.84 5.6 6.8 8.9 0.00
0.063 1.65 3.82 1.11 0.60 4.2 3.7 4.1 0.00
0.128 2.33 0.29 0.53 0.44 1.6 1.3 1.3 0.01
0.248 3.11 0.29 0.28 0.24 -0.55 .13 0.12 0.41
0.452 4.69 -0.38 0.16 0.03 -0.02 -0.02 -0.022 -0.38

4. Hidden color, 6 quark states
The HERMES experimental result [2] presents an interesting puzzle because it observed a
significant negative value of b1 for x = 0.45. At such a value of x, any sea quark effect
such as arising from double-scattering or virtual pions is completely negligible. Furthermore,
the nucleonic contributions are computed to be very small [3, 4], so one must consider other
possibilities. We therefore take up the possibility that the deuteron has a six-quark component
that is orthogonal to two nucleons. Such configurations are known to be dominated by the
effects of so-called hidden-color states in which two color-octet baryons combine to form a color
singlet [8]. Such configurations can be generated, for example, if two nucleons exchange a single
gluon leading to a quantum fluctuation involving an color octet and color anti-octet baryon.

In particular, a component of the deuteron in which all 6 quarks are in the same spatial wave
function (|6q〉) can be expressed in terms on nucleon-nucleon NN , delta-delta ∆∆ and hidden
color components CC as [8]:

|6q〉 =
√

1/9|N2〉+
√

4/45|∆2〉+
√

4/5|CC〉. (10)

This particular state has an 80% probability of hidden color and only an 11% probability to be
a nucleon-nucleon configuration. The 80 % cited here is a purely algebraic number that applies
only for completely overlapping nucleons. The real question is the probability that the deuteron
consists of 6 quarks are in the same spatial wave function, which is denoted here as P6q. A
recent review of hidden color phenomena is presented in [9]. In the following, the term |6q〉 is
referred to interchangeably as either a six-quark or hidden color state.

The discovery of the EMC effect [10] caused researchers to consider the effects of such six-
quark states [11] in a variety of nuclear phenomena [12, 13, 14]. Furthermore, the possible
discovery of such a state as a di-baryon resonance has drawn recent interest [15]. Therefore we
propose a model of a hidden-color six-quark components of the s and d-states of the deuteron.
We also note that including a six-quark hidden color component of the deuteron does not lead
to a conflict with the measured asymptotic d to s ratio of the deuteron [16]. The EMC effect
remains the only nuclear effect that has not been explained using conventional (non-quark)
dynamics [18, 17, 19].

Our calculation is exploratory, so we use the simplest model possible. We postulate that
the S state of the deuteron has a component with 6 quarks in an s state with total angular
momentum 1 and isospin 0. Then the D state has a 6-quark component with any one quark in
a d3/2 state. We define these states by combining 5 s-state quarks into a spin 1/2 component,
which couples with either the s1/2 or d3/2 single-quark state to make a total angular momentum
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of 1. We therefore write the wave functions of these states for a deuteron of Jz = H as

ψj,l,H(p) =
√
Nlfl(p)

∑
ms,mj

Yjlmj
〈jmj ,

1

2
ms|1H〉, (11)

where l, j = s1/2 or d3/2, Nl is a normalization constant chosen so that
∫
d3pψ̄j,l,H(p)γ+ψj,l,H(p) =

1, and Yjlmj
is a spinor spherical harmonic. The matrix element for transition between the l = 0

and l = 2 states is given by the light-cone distribution

FH(x6q) = 1
2

∫
d3pψ̄1/2,0,H(p)γ+ψ3/2,2,H(p)δ

(
p cos θ+E(p)

M6q
− x6q

)
, (12)

where E(p) =
√
p2 +m2 with m as the quark mass, and M6q is the mass of the six-quark bag, x6q

is the momentum fraction of the six-quark bag carried by a single quark and x6qM6q = xM [11].
Note that p cos θ is the third (z) component of the momentum, so that the plus component of
the quark momentum is E(p) + p cos θ. We take M6q = 2M (its lowest possible value) to make
a conservative estimate.

The term of interest b1(x) is given by

b6q1 (x) =
1

2
(2) (F0(x)− F1(x))P6q, (13)

where P6q is the product of the probability amplitudes for the 6-quark states to exist in the
deuteron, and the factor of 2 enters because either state can be in the d-wave. Evaluation of FH
using Eq. (11) leads to the result:

b6q1 (x) = −
√

N0N2
2

3
4π

∫
d3pf0f2(3 cos2 θ − 1)δ

(
p cos θ+E(p)

M − x
)
P6q. (14)

To proceed further we, specify the wave functions to be harmonic oscillator wave functions.
We take f2(p) = −p2R2e−p

2R2/2, f0(p) = e−p
2R2/2, where R is the radius parameter. This

model is specified by only three parameters: R, the quark mass m, and P6q. The key question
is whether such a model can reproduce the HERMES data point at x = 0.452 without using a
value of P6q large enough to conflict with conventional nuclear physics calculations that do not
require a non-zero value. In other words, we ask if the hidden color states provide a substantial
mechanism to make b1 non-zero at large values of x.

We adjust the value of P6q to reproduce the data at that point and see how large a value is
needed. Here we use a quark mass of 338 MeV [20]. We expect that the 6-quark state should
be somewhat larger than that of a nucleon, and therefore choose R to be 1.2 fm. The results of
the calculations are not very sensitive to the exact value of R [1].

The main result is that we can reproduce the value of the HERMES high-x point with value
of P6q = 0.15%. This is shown in Table I and Figs. 4 and 5 of Ref. [1]. Combining the effects
of pions and hidden color states leads to a reasonable reproduction of the HERMES data for its
entire range of x. Furthermore, no mechanism other than hidden color is known to contribute to
b1 at large values of x. Given this, reasonable predictions for the JLab experiment are presented
in Ref. [1].

5. Sum rule of Close & Kumano [21]
This sum rule states that

∫
dx b1(x) = 0, and is derived by assuming that b1 is carried entirely by

valence quarks. This is analogous to the Gottfried sum rule for the integral of F2p −F2n, which
assumed that ū(x) = d̄(x). Various effects of the sea violate the sum rule, and the violations
may be more interesting than the sum rule.

Ref. [1] shows that nucleonic, pion and shadowing effects all violate the sum rule, and for
nucleonic and pionic contributions by an infinite amount. However, integration of Eq. (14) does

yield a zero due to the tensor nature of the integrand. This means that b6q1 must have regions
of x for which it is positive and regions of x for which it is negative.
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6. Summary
We find that pionic effects are sizable for values of x < 0.2 and reproduces the HERMES data
in that region. Furthermore, we find that 6-quark hidden color effects can enter at larger values
of x, and that the combination of pionic and hidden color effects reproduces HERMES data.
Predictions are made for future JLab data. The Close & Kumano sum rule does not hold for all
mechanisms other than 6-quark effects. If the sum rule holds, b1 must take on both positive and
negative values. Observing such would provide evidence for 6-quark hidden-color components
of the deuteron.
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