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Abstract. Blind deconvolution is a particularly challenging inverse problem since information
on both the desired target and the acquisition system have to be inferred from the measured data.
When the collected data are affected by Poisson noise, this problem is typically addressed by the
minimization of the Kullback-Leibler divergence, in which the unknowns are sought in particular
feasible sets depending on the a priori information provided by the specific application. If these
sets are separated, then the resulting constrained minimization problem can be addressed with
an inexact alternating strategy. In this paper we apply this optimization tool to the problem
of reconstructing astronomical images from adaptive optics systems, and we show that the
proposed approach succeeds in providing very good results in the blind deconvolution of non-
dense stellar clusters.

1. Blind deconvolution from Poisson data

Several acquisition systems provide the information as the convolution of an unknown
distribution with a hardware-dependent kernel which transforms the target input in the measured
output. A common instance of deconvolution problem is the image deblurring, in which the
target image is distorted by a point spread function (PSF) whose features depend on the
acquisition system and the environmental occurrences [1, 2]. If the PSF is not completely
known, it has to be estimated within the deconvolution process together with the unknown
distribution and the reconstruction problem increases its ill-posedness due to the large number
of possible solutions, most of which have no physical meaning. This problem is known in the
literature as blind deconvolution, and a key requirement for its solution is the availability of
suitable a priori information. In this paper we address the blind deconvolution problem of
reconstructing a blurred astronomical image acquired by a ground-based telescope when the
PSF is unknown. Due to the Poisson nature of the noise introduced in the recording process of
the image, a maximum likelihood approach leads to the reformulation of the imaging problem
as the constrained minimization of the Kullback-Leilber (or Csiszár I- [3]) divergence

KL(g,h ∗ f + b) =
∑

i∈S

{

gi log
gi

(h ∗ f)i + bi
+ (h ∗ f)i + bi − gi

}

, (1)
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where g is the measured image, h the PSF, f the target image, b a known background radiation,
S the set of multi-indices i = (i1, i2) and h ∗ f denotes the convolution product. As concerns
the feasible sets for f and h, we consider non-negativity and flux conservation for the target
image, while for the PSF we impose non-negativity, normalization to 1 and an upper bound
deduced by the so-called Strehl ratio (SR), which is the ratio of peak diffraction intensity of an
aberrated versus perfect waveform and can be estimated from the telescope and image features
(see e.g. [4]). As a result of these choices, the mathematical formulation of the minimization
problem becomes

min KL(g,h ∗ f + b), (2)

s.t. f ≥ 0 ,
∑

i∈S

fi = c ; 0 ≤ h ≤ s ,
∑

i∈S

hi = 1

where c is the background-subtracted flux of the detected image and s is the upper bound
derived from the SR.

2. Alternating minimization

Problem (2) is a hard task for an optimization method since the objective function is convex
if restricted to f or h, but is nonconvex with respect to (f ,h) [5], thus admitting multiple
stationary points. Due to the separability and the simplicity of the constraints, here we adopt
an inexact alternating minimization (IAM) strategy [6, 7, 8], in which at each (outer) iteration
k ≥ 1 the two subproblems

argmin KL(g,h(k−1) ∗ f + b) (3)

s.t. f ≥ 0 ,
∑

i∈S

fi = c

argmin KL(g,h ∗ f (k) + b) (4)

s.t. 0 ≤ h ≤ s ,
∑

i∈S

hi = 1

are sequentially solved inexactly by means of a finite numbers N
(k)
f ≤ Nf and N

(k)
h ≤ Nh (with

Nf and Nh arbitrarily fixed) of (inner) iterations of the scaled gradient projection (SGP) method
[9]. The convergence of the resulting scheme has been proved in Theorem 4.2 of [6]:

Theorem 2.1 For any choice of (Nf , Nh), every limit point of the sequence (f (k),h(k))

generated by applying N
(k)
f ≤ Nf and N

(k)
h ≤ Nh SGP iterations to (3) and (4), respectively, is

a stationary point for problem (2).

Since SGP has been described in several papers concerning deblurring and denoising problems
[9, 10, 11, 12, 13, 14], here we do not address the steps of the algorithm and its details. A
complete and recent description can be found in [15], while the routines in MATLAB and
Interactive Data Language (IDL) implementing SGP can be freely downloaded by the website
http://www.unife.it/prisma/software. The result in Theorem 2.1 is the usual convergence
property proved for a general first-order method in absence of further convexity hypotheses
of the objective function. We remark that, thanks to the constraints we adopted, the sequence
(f (k),h(k)) generated by our method is bounded and therefore the existence of limit points is
assured, even if there is no practical way to demonstrate if these points are minimizers.
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Figure 1. Blurred and noisy images of the star clusters SC50 (left panels), SC100 (central
panels) and SC200 (right panels) convolved with the PSFs of LBT with SR = 0.81 (top panels)
and 0.60 (bottom panels). All images are displayed in log scale.

3. Numerical experiments

In this section we test the effectiveness of the IAM procedure in an astronomical blind
deconvolution problem. In particular, we used simulations of a single mirror of the Large
Binocular Telescope (LBT) and its First Light Adaptive Optics (FLAO) system [16], which
provides SR up to 0.9 in K-band.

3.1. Creating the simulations

We chose two PSFs with SR = 0.81 and 0.60, respectively, while for the astronomical objects we
restricted our analysis to the 512×512 images of three star clusters, in which the positions of the
stars have been computed following a Gaussian distribution around the center of the image and
their magnitudes are randomly distributed around m = 16 with a standard deviation of about
0.4. The number of stars in the two images has been set equal to 50, 100 and 200, respectively.
The three targets will be denoted in the following with SC50, SC100 and SC200. We convolved
the three objects with the two PSFs, thus obtaining six noise-free images, to which we added a
background in K-band, corresponding to about 13.5 mag arcsec−2.
The resulting images have been corrupted with Poisson and additive Gaussian noise (read out
noise - RON). In order to avoid saturation of the detector, the images have been obtained by
co-adding 30 frames. It follows that the variance of the RON is 30σ2, thus corresponding to the
RON of 30 frames; we set σ = 10 e−/px. According to the approach proposed in [17], RON
compensation is obtained in the deconvolution algorithms by adding the constant 30σ2 = 3000
to the image and the background. The final images are shown in figure 1.
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Table 1. Reconstruction errors for the SC50, SC100 and SC200 star cluster models and the two
SRs. In the third column the initialization h(0) is given (A is the autocorrelation of the ideal
PSF while C is the ideal PSF plus a constant selected for satisfying the SR constraint - see the
text). In the subsequent columns, we give the value of the MARE defined in Eq. (5) and the
RMSE for the reconstructed PSF. The values of the objective function FOBJ are also reported.

Star Cluster SR Init. MARE RMSE FOBJ

SC50
0.81

A 0.08% 1.05% 9.99e+004
C 0.07% 2.61% 1.02e+005

0.60
A 0.03% 2.90% 1.05e+005
C 0.04% 3.03% 1.00e+005

SC100
0.81

A 0.06% 0.86% 9.64e+004
C 0.05% 3.25% 9.93e+004

0.60
A 0.02% 4.07% 1.14e+005
C 0.03% 3.75% 1.00e+005

SC200
0.81

A 0.06% 0.76% 9.30e+004
C 0.03% 3.62% 9.67e+004

0.60
A 0.02% 4.63% 1.31e+005
C 0.02% 4.32% 1.02e+005

3.2. Initialization and iteration numbers

A key point of the procedure is a good choice of the starting point (f (0),h(0)), since different
initializations might lead to different limit point due to the nonconvexity of the objective
function. In particular, since the first step of the alternating approach is a minimization on
the image, a clever initialization for the PSF is crucial to address the sequence in the “basin
of attraction” of the desired stationary point. While for f (0) it is rather common to start
with a constant image (and several tests with different choices showed very similar results), the
initial PSF h(0) has been chosen in two ways: the autocorrelation of the ideal PSF (possibly
reiterated until the SR bound is satisfied) and the ideal PSF plus a small constant chosen to
satisfy normalization and SR value.

As concerns the choice of the number of iterations, for the inner subproblems we used N
(k)
f = 50

and N
(k)
h = 1 for all k, while for the outer cycle we performed 3000 iterations. We remark

that for the specific content of our images we do not perform an early stopping of the iterations
to achieve a regularized solution since the minimizers of the KL divergence are sparse objects
(nightsky [18] or checker-board [19] effect). However, we recall that our approach can be easily
extended to incorporate regularization terms in the objective function, as a ℓ1 constraint on the
image (inducing sparsity) and/or a Tikhonov term on the PSF (inducing smoothness). In these
cases, some Poisson-based criterion for the choice of the parameter(s) would be necessary (see
e.g. [20, 21]).

3.3. Results

The accuracy of the reconstructions has been evaluated with different indices, namely the MARE
for the image and the RMSE for the PSF, defined respectively as

MARE =
1

q

q
∑

i=1

|mi − m̃i|

m̃i

; RMSE =
‖h− h̃‖2

‖h̃‖2
, (5)

4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014) IOP Publishing
Journal of Physics: Conference Series 542 (2014) 012006 doi:10.1088/1742-6596/542/1/012006

4



Figure 2. Left panels: true PSFs with SR = 0.81 (top row) and 0.60 (bottom row). Middle
panels: reconstructed PSFs in the SC200 test when h(0) is the autocorrelation of the ideal PSF.
Right panels: reconstructed PSFs in the SC200 test when h(0) is the ideal PSF plus a constant.
All images are displayed in log scale.

where q is the number of stars, mi and m̃i are the reconstructed and the true magnitudes, h
and h̃ are the reconstructed and true PSFs and ‖ · ‖2 denotes the Euclidean norm.
The results are shown in table 1 while in figure 2 we reported the reconstructed PSFs for the
SC200 dataset. In particular, we can notice that the algorithm is able to recover the stars with
a very high accuracy, with values of the MARE which are always below 0.1%. At the same
time, both the PSFs are also well recovered, with reconstruction errors varying around a few
percent. As concerns the comparison between the two initializations, our results show that the
autocorrelation of the ideal PSF seems to provide better reconstructions of the PSF for the
higher SR, as attested both by the lower RMSE in table 1 and by the plots in figure 2, in which
we can notice a better recovery of the PSF structures. No significant differences are present in
all the three tests when SR = 0.60. We have to remark that we always observed a convergent
behaviour in the objective function while, in few cases, the errors of the PSF are still decreasing
after 3000 iterations, thus indicating that a larger number of iterations could still improve the
solutions.

4. Conclusions and future work

In this paper we present a general optimization approach for the minimization of the KL
divergence in the case of blind deconvolution of images corrupted by Poisson noise. The
minimization scheme we analyzed exploits the separability of the constraints, providing
subsequences which converge to stationary points. Moreover, it is particulary suited for the
feasible sets arising in the case studied, made up by box constraints combined with one equality
constraint. The application to the reconstruction of star cluster images blurred by LBT-like
PSFs seems to confirm that the method is able to reconstruct both the target distribution and
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the unknown PSF with very high accuracy and paves the way to possible integrations into
specific codes developed for accurate photometric and astrometric analysis of star clusters, as
the so-called StarFinder [22]. Future work will involve also the generalization of the approach
to multiple-image problems as the co-adding of images with different PSFs [23] or the blind
deconvolution of multiple images provided by a Fizeau interferometer [24]. Moreover, effective
strategies for the reduction of undesired boundary effects [25, 26] will be employed, in order to
be able to reconstruct effectively clusters with stars positioned near the edges of the image.
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