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Abstract. This work is concerned with large-scale three-dimensional inversion under transient
elastodynamic conditions by means of the modified error in constitutive relation (MECR), an
energy-based cost functional. A peculiarity of time-domain MECR formulations is that each
evaluation involves the computation of two elastodynamic states (one forward, one backward)
which moreover are coupled. This coupling creates a major computational bottleneck, making
MECR-based inversion difficult for spatially 2D or 3D configurations. To overcome this obstacle,
we propose an approach whose main ingredients are (a) setting the entire computational
procedure in a consistent time-discrete framework that incorporates the chosen time-stepping
algorithm, and (b) using an iterative SOR-like method for the resulting stationarity equations.
The resulting MECR-based inversion algorithm is demonstrated on a 3D transient elastodynamic
example involving over 500,000 unknown elastic moduli.

Introduction. The identification of spatially-varying mechanical material parameters (e.g.
elastic moduli) from measured elements of the mechanical response of the solid body is an
important inverse problem arising in connection with e.g. seismic exploration, biomechanical
imaging or damage detection. Considerable research has been dedicated to formulate algorithms
for material identification, most often based on minimizing a L2 cost functional [1, 5, 11].

Alternatively, energy-based cost functionals are quite relevant for this kind of inverse
problem.They have been initially introduced in e.g. [8] for electrical impedance tomography
and in [9] for error estimation in the linear elastic FEM. Such functionals, often referred in solid
mechanics as error in constitutive relation (ECR) functionals, then quickly thereafter proved
very useful for various mechanical parameter identification problems [4, 6, 7, 10]. In particular,
modified ECR functionals (e.g. [10]), where reliable informations (equilibrium equations, initial
conditions, known boundary conditions) are enforced strictly while unreliable informations
(measured data, constitutive properties) are incorporated as constitutive or observation
residuals, have become widely used for mechanical parameter identification problems.

In most available investigations using (M)ECR functionals, either (quasi-)static or frequency-
domain conditions are assumed; moreover, the considered parameter identification problems
are of moderate dimension. Recent efforts towards broadening that scope include large-scale
inversion in a frequency-domain setting [3] and MECR functionals for parameter identification
under transient dynamical conditions [6]. The latter approach entails, for each evaluation of the
MECR functional, solving a set of stationarity equations governing one forward elastodynamic
state (with initial conditions) and one backward elastodynamic state (with final conditions).
Moreover, the two states are coupled, unlike in the case of L2 minimization, which creates a major
computational bottleneck [6], causing past investigations to be restricted to 1D configurations.
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This work aims at formulating and demonstrating a MECR-based approach suitable for
large-scale three-dimensional inversion under transient elastodynamic conditions. The forward-
backward coupling bottleneck is overcome by (a) setting up and exploiting the stationarity
conditions in a time-discrete framework that incorporates the chosen time-stepping algorithm,
and (b) an iterative SOR-like treatment for the resulting stationarity equations.

Problem setting. Let a solid elastic body occupy the bounded and connected domain Ω⊂Rd

(1 ≤ d ≤ 3) with boundary Γ. Transient motions of the solid during a time interval of interest
t∈ [0, T ] are governed by (a) the balance equations

∇·σ + f = ρü in Ω× [0, T ], σ ·n = g on ΓN× [0, T ], (1)

where u is the displacement field, ρ is the mass density, σ denotes the stress tensor, f is a given
body force density, g and ΓN⊂Γ are the given surface force density (traction) and its support,
and n is the unit normal vector pointing outward from Ω; (b) the kinematic compatibility
equations

ε[u] = 1
2(∇u+∇uT), in Ω× [0, T ], u = 0 on ΓD× [0, T ], (2)

where ε[u] denotes the linearized strain tensor associated with the displacement u and ΓD = Γ\ΓN

is the constrained part of Γ; (c) the homogeneous initial conditions

u(·, 0) = u̇(·, 0) = 0 in Ω; (3)

and (d) the constitutive (linear elastic) relation, involving the fourth-order elasticity tensor C:

σ = C :ε in Ω× [0, T ]. (4)

Inverse problem. Supplementing the basic equations (1)–(4), additional information in the form
of measured transient displacements ũ in Ωm×[0, T ] (where Ωm⊂Ω is a measurement region) is
assumed to be available. The inverse problem then consists in finding the spatial distribution of
the elastic moduli C from the data ũ, subject to equations (1)–(4) with given excitations f , g.

Modified error in constitutive relation approach. Measurement noise is to be expected, in
which case the exact enforcement of experimental data is normally not desirable. Accordingly,
a modified error in constitutive relation (MECR) functional [2, 6] is defined by treating the
discrepancy between measured quantities and their computed counterparts as a penalty term:

Ũ(u,σ,C) =
1

2

∫ T

0

(
σt−C :ε[ut] , C−1 : (σt−C :ε[ut])

)
dt+

ξf

2
‖u− ũ‖2L2(Ωm) (5)

where (f , g) stands for the L2(Ω) scalar product of f and g, ξ > 0 is a tunable dimensionless
weight and f a fixed constant ensuring consistent units.

In this framework, the inverse problem is cast as the optimization problem

(u?,σ?,C?) = arg min
u,σ,C

Ũ(u,σ,C) subject to (1)–(3), (6)

whose solution (u?,σ?,C?) satisfies equations (1) to (3) (i.e. balance, compatibility and initial
conditions) while achieving a compromise between (i) satisfying the constitutive relation (4) and
(ii) matching the measurements ũ.

When using MECR functionals of the form (5), the mismatch between an assumed material
property C and measurements ũ is quantified through the modified error in constitutive relation
Ẽ(C) := Ũ(uC,σC,C), where the mechanical fields (uC,σC) are determined by the partial

minimization of Ũ(u,σ,C) for given C, and in particular depend on C:

(uC,σC) := arg min
u,σ

Ũ(u,σ,C) subject to (1)–(3). (7)

A natural approach for solving the minimization (6), previously used for frequency-domain
problems in [3], then consists in an alternating-directions strategy whereby the transition from a

4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014) IOP Publishing
Journal of Physics: Conference Series 542 (2014) 012003 doi:10.1088/1742-6596/542/1/012003

2



current iterate (u,σ,C) to the next iterate (u?,σ?,C?) consists in (i) setting (u?,σ?) = (uC,σC),
with (uC,σC) solving the partial minimization (7), and (ii) finding the material update C? by
solving the partial minimization problem

C? := arg min
C′∈C

Ũ(uC,σC,C′), (8)

where (uC,σC) are the outcome of (7) and are kept fixed. This approach has been implemented
in this work and is employed for the numerical experiments.

Discrete formulation of MECR-based inversion. We now consider a time-discrete
formulation of the transient dynamics involved in the definition and exploitation of the MECR
functional, based on a Newmark time-stepping scheme. Introducing a sequence t0 = 0, t1 =
h, . . . , tk = kh, . . . , tn = Nh= T of discrete time instants (with a constant time step h= T/N
used for simplicity), we let fk denote the value at t = tk of a generic time-dependent quantity
f . The Newmark update relations linking the displacements uk, the velocities vk := u̇k and the
accelerations ak := ük, which introduce two additional algorithmic parameters β, γ and read

uk+1 = uk + hvk + h2[β̄ak + βak+1], vk+1 = vk + h[γ̄ak + γak+1]. (9)

(where β̄ := 1
2−β and γ̄ := 1−γ, and with β= 1/4, γ = 1/2 used in the numerical experiments).

In this setting, introducing for convenience the shorthand notations u,v,a,σ for denoting
mechanical field histories (uk,vk,ak,σk)0≤k≤N , the inverse problem consists in reconstructing
the spatial distribution C? of the elasticity tensor, and additionally in finding the mechanical
field histories σ? and (u?,v?,a?), such that

(u?,v?,a?,σ?,C?) = arg min
(u,v,a)∈U,σ∈S(a),C

ŨN (u,σ,C) (10)

where the admissibility spaces U and S(a) respectively incorporate kinematic constraints (2), (3)

and balance equations (1), and the time-discrete counterpart ŨN of the MECR functional (5) is
defined by

ŨN (u,σ,C) =
1

2

N∑
k=0

(
σk−C :ε[uk] , C−1 :σk−ε[uk]

)
+

N∑
k=1

ξf

2
‖u− ũ‖2L2(Ωm). (11)

Lagrangian and optimality conditions. As problem (10) involves kinematical and dynamical
admissibility constraints embedded in spaces U and S, it is now reformulated in terms of its
first-order Karush-Kuhn-Tucker necessary optimality conditions. The latter are derived from
the following Lagrangian functional:

L(u,v,a,σ, ū, v̄, ā,C) = ŨN (u,σ,C) +
〈
a0 , ρū0

〉
+
〈
σ0 , ε[ū0]

〉
−F0(ū0)−

〈
σ0 ·n, ū0

〉
Γ\ΓN

+
N−1∑
k=0

{〈
σk+1 , ε[ūk+1]

〉
+
〈
ak+1 , ρūk+1

〉
−Fk+1(ūk+1)−

〈
σk+1 ·n, ūk+1

〉
Γ\ΓN

+
〈
uk+1−uk−hvk−h2[β̄ak +βak+1], ρāk+1

〉
+
〈
vk+1−vk−h[γ̄ak +γak+1], ρv̄k+1

〉}
(12)

which incorporates the MECR functional (11) together with the constraints resulting from (i)
the initial balance equation, with multiplier field ū0; (ii) the current balance equations, with
multiplier fields ūk+1 and (iii) the Newmark update equations (9), with multiplier fields āk+1

and v̄k+1. Moreover, the quantities ū, v̄, ā are time-discrete sequences of Lagrange multiplier
fields, (·, ·) denotes L2(Ω) scalar products, and Fk are linear forms arising from the prescribed
time-dependent excitations f , g featured in (1).

The (first-order) necessary optimality conditions are found by setting to zero the first-order
derivatives of the Lagrangian (12) with respect to (a) the stress history σ, (b) the kinematic
histories (u,v,a,σ), (c) the multiplier histories (ū, v̄, ā) and (d) the elasticity tensor C.
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(a) Differentiating L with respect to σ, the stress history in Ω is found to be given in terms of
the kinematic histories by

σ0 = −C :ε[ū0], σk = C :ε[uk− ūk] (1≤ k≤N) (13)

while the multiplier history is found to satisfy the boundary condition

ūk = 0 on ΓD (0≤ k≤N), (14)

(b) Setting to zero the derivatives of L with respect to the kinematic histories (u,v,a), using (13)
to eliminate stresses, and performing a finite element discretization, the following forward
time-stepping equations are obtained for the space-discrete histories (u,v,a) and (ū, v̄, ā):

(i) Initial conditions:
u0 = v0 = 0 ; Ma0 = Kū0 + F0, (15a)

(ii) Forward time-stepping equations (0≤ k≤N−1):

Kuk+1 + Mak+1 = Kūk+1 + Fk+1, and Newmark update equations (9). (15b)

(c) Setting to zero the derivatives of L with respect to the multiplier histories (ū, v̄, ā) simply
restores all constraints introduced in L. Upon elimination of stresses using (13) and finite
element discretization, the following set of backward time-stepping equations is obtained.

(i) Final conditions:

MāNKūN = −ξfD(uN − ũN ), v̄N = 0, ūN − h2βāN = 0. (16a)

(ii) Backward transition equations (1≤ k≤N−1):

Māk + Kūk = Māk+1 −Kūk+1 − ξfD(uk− ũk), (16b)

v̄k = v̄k+1 +hāk+1, ūk−hγv̄k−h2βāk = hγ̄v̄k+1 +h2β̄āk+1. (16c)

(iii) Backward transition equation (last):

ū0 = hγ̄v̄1 + h2β̄ā1. (16d)

Steps (a), (b) and (c) achieve the partial minimization (7), where C is kept fixed. K, M, Fk

respectively denote the stiffness and mass matrices arising from FE discretization, and the nodal
excitation at time tk, while the matrix D corresponds to L2 scalar products on Ωm.

(d) This step, constituting the second part of the alternating-direction approach, implements
the partial minimization (8). Enforcing the first-order necessary optimality condition

∂CU(uC,σC,C)[Ĉ] = 0 ∀Ĉ for the latter problem and assuming isotropic linear elasticity,
the explicit pointwise updating formulas

B? =

(∑N
k=1 p

2
k∑N

k=1 ε
2
k

)1/2

, G? =
1

2

( ∑N
k=1 σ

d
k :σd

k∑N
k=1 ε

d[uk] :εd[uk]

)1/2

. (17)

are found, with B and G denoting (spatially-dependent) bulk and shear moduli, respectively.
Since B?, G?> 0 by construction, any such update C? of C is positive definite.

Solution methodology for the stationarity equations. To evaluate ŨN (C) or perform
the constitutive update (17) entails solving for the kinematic and multiplier histories the
stationarity problem combining the forward equations (15a,b) and the backward equations (16a–
d), which constitutes the cornerstone of MECR-based inversion. In addition to defining (as
usual) evolution equation in opposite directions of time, the stationarity equations are here
coupled. Practical considerations dictated by the large-scale identification objective suggest
an iterative solution algorithm based on usual time-stepping solvers. Block successive over-
relaxation (SOR) iterations are used here. Gathering equations (15a,b) and (16a–d) for all
times steps, the forward and adjoint histories X := (u,v,a)T and X̄ := (ū, v̄, ā)T can be
considered as solving the following system of equations, set in block form:

AX + CX̄ = F, −DX +ATX̄ = G, (18)
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where the definition of matrices A, C,D and vectors F,G can be easily obtained by identification
from (15a,b) and (16a–d). In particular, the matrix A is associated to the forward Newmark
scheme, and the backward time-stepping can be shown to be represented by the adjoint matrix
AT. This implies in particular that the forward and backward time stepping schemes have
identical stability conditions. Then, the iterative scheme is defined by introducing auxiliary
unknowns W, W̄ through

X(i+1) = W + η̄X(i), X̄(i+1) = W̄ + η̄X̄(i), (19)

so that one iteration of the SOR algorithm consists, for given (X(i), X̄(i)) in solving equations

(a) AW = η(F − CX(i)) then (b) ATW̄ = η(G+DX(i+1)) (20)

(where 0 < η < 2 is the relaxation parameter) and obtain (X(i+1), X̄(i+1)) from (19) with the
converged values of W, W̄ . The SOR iterations (20) are quite simple to implement using existing
FE dynamical analysis codes, as they involve the usual stiffness and mass structural matrices.
We used the finite element code SIERRA/SDA [13], which has massively parallel capabilities
including efficient multilevel domain decomposition strategies for solving linear systems.

3D numerical example. A unit cube containing a cylindrical inclusion with an ellipsoidal
cross section (Figure 1), its bottom surface being fixed, is loaded on its other faces with a normal
uniform time-harmonic force density, whose magnitude is one unit on the top surface and 0.5
units on the side surfaces (load frequency 1 Hz, total load duration 1 s, with N = 100 time steps
of h= 0.01 s). The true shear and bulk moduli of the background material are taken as G= 2
and B = 4, while those of the inclusion are G= 6 and B = 16. The 3D domain was discretized
using 414, 000 tetrahedral finite elements (75, 000 nodes). The data ũ is synthetically generated
by (i) computing all displacement components at all nodes of the fine mesh for 100 time steps,
(ii) interpolating them onto a coarser uniform mesh (i.e. cylindrical inclusion not included),
consisting of 275, 000 tetrahedral elements (50, 000 nodes), and (iii) polluting it with Gaussian
noise with relative noise level δ = 0.01. The total number of unknown moduli for this example
is 550, 000. We note that reconstruction of moduli from interior data is the main focus of the
active research area of biomechanical imaging (see e.g. [12] and references therein) .The value of
ξ is selected according to δ via Morozov’s discrepancy principle, i.e. choosing the largest value
of ξ meeting the condition (wherein (u?

k)0≤k≤N satisfy the optimality system (18)):

N∑
k=1

‖u?
k− ũk‖2L2(Ωm)

/ N∑
k=1

‖ũk‖2L2(Ωm) ≤ δ
2, (21)

Figure 1 shows threshold plots of the reconstructed shear and bulk moduli, respectively, with
the lower threshold set to 5 and 12, respectively, for plotting G and B. Either plot shows the
inclusion location and geometry to be correctly identified (with some aberrations occurring near
the top surface, which may result from measurements being less sensitive to moduli in those
areas). Figure 2 shows cuts perpendicular to the x, y and z axes, going through the cube center.

Figure 1: 3D example: configuration (left), threshold plots of reconstructed B (middle) and G
(right)
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(a) Reconstructed G (b) Reconstructed B (c) Target shape

(d) Reconstructed G (e) Reconstructed B (f) Target shape

(g) Reconstructed G (h) Reconstructed B (i) Target shape

Figure 2: 3D example, cut views: x-plane (top row), y-plane (middle row), z-plane (bottom row)
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[10] Ladevèze, P., Nedjar, D., Reynier, M. Updating of finite element models using vibration tests. AIAA
Journal , 32:1485–1491 (1994).

[11] Métivier, L., Brossier, R., Virieux, J., Operto, S. Full waveform inversion and the truncated Newton
method. SIAM J. Sci. Comput., 35:B401–B437 (2013).

[12] Sinkus, R., Tanter, M., Catheline, S., Lorenzen, J., Kuhl, C., Sondermann, E., Fink, M.
Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magnetic
Resonance in Medicine, 53:372–387 (2005).

[13] Walsh, T. F., Reese, G. M., Bhardwaj, M. K. Salinas: theory manual. Sandia report SAND2011-8272,
http://dx.doi.org/10.2172/1031884 (2011).

4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014) IOP Publishing
Journal of Physics: Conference Series 542 (2014) 012003 doi:10.1088/1742-6596/542/1/012003

6


