

Modeling a distributed environment for a petroleum reservoir
engineering application with software product line

Rafael de Faria Scheidt, Patrícia Vilain, M. A. R. Dantas

Research Laboratory of Distributed Systems (LaPeSD)
Department of Informatics and Statistic (INE)
Federal University of Federal Santa Catarina (UFSC)
Florianópolis, SC - Brazil

E-mail: {rfscheidt, vilain, dantas}@inf.ufsc.br

Abstract. Petroleum reservoir engineering is a complex and interesting field that requires large
amount of computational facilities to achieve successful results. Usually, software

environments for this field are developed without taking care out of possible interactions and

extensibilities required by reservoir engineers. In this paper, we present a research work wh ich

it is characterized by the design and implementation based on a software product line model for

a real distributed reservoir engineering environment. Experimental results indicate successfully
the utilization of this approach for the design of distribu ted software architecture. In addition,

all components from the proposal provided greater visibility of the organization and processes

for the reservoir engineers.

1. Introduction

The reuse of elements and components inside projects with a similar domain scop e in software
engineering and object oriented programming approaches is a common practice. This effort is related
to the reduce of costs, time and productivity [1]. Aiming to reach these goals several techniques were
proposed, such as: domain engineering, frameworks, patterns, software architecture and also
development based on components [2].

The software product line (SPL) is a characteristic approach which was conceived to organize
systematically and also provide a predictable fashion to software reuse based on the same product
domain. As mentioned in [3], the SPL technique appears from products or similar researches in the
same domain to a common business area. In accordance to the Software Engineering Institute (SEI)
[1], the SPL paradigm represents software systems which share a set of common and controlled
characteristics. These satisfies a special market segment and are developed from key artifacts (core
assets), in a pre-defined form.

Several organizations, when implementing their software domain applications, adopt some particular
characteristics to differentiate one specific product [18]. Thus, these organizations are always seeking
for processes and approaches that could help in the reuse of the main characteristics from a specific
product.

This paper presents a research work which is depicted by a design and an implementation of software
product, for a reservoir engineering environment, adopting the software product line (SPL) paradigm.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

The contribution is characterized for considering a real application, which was being developed at the
Research Laboratory of Distributed Systems (LaPeSD) at Federal University of Santa Catarina. In this
group, with large experience in developing distributed applications, similar to other peers groups,
when a new version of a product was demanded several artifacts were reused, albeit observing an
evolution of some characteristics. Therefore, it is possible to verify the existence of core architecture
with some components variants.

In addition, it was frequently the case where the client asks for a specific feature and afterwards asks
to remove this facility. After sometime, the client claimed again for that specific module, but now the
system could not support it. In other words, in both sides, clients and developers, there were no
culture of reuse. Therefore, the utilization of the SPL approach may improve operations such as
inclusion and remove of elements from the distributed architecture. As a result, it was expected to
achieve a better level of flexibility, maintenance and product evolution.

The paper is organized as follows. Related works are presented in section 2. In section 3, we show the
conventional distributed configuration utilized for the development that is contrasted with the proposal
considering the use of the SPL technique. Empirical results are presented in section 4. Finally, in
section 5 we presented conclusions and future work related to this research.

2. Related Work

In this section, it is presented two research projects in which distributed configurations were conceived
as an intrinsic feature together with the SPL approach. These two related works were chosen because
it was possible to have more access to information from these proposals.

2.1. UBÁ
The UBÁ proposal [14] aims to build SPL architecture to help the development of middleware
systems to the grid computing configurations. The approach is used to minimize the complexity
related to this configuration. Examples of some facilities created are: the coordination for large scale
resource sharing; Quality of Service (QoS) provision; support of a large number of heterogeneous
devices; geographic dispersion of resources, people and applications.

This research was characterized through the SPL instantiation of the proposal, thus creating a
middleware for grid computing which provides their main facilities. In addition, it was built a structure
that utilizes the API from the created middleware. The configuration was tested in different scenarios,
executing successfully one application in these different environments.

2.2. Systemized Reuse of SPL in Financial Segment
A study presented in [16] covers a system reuse, through the utilization of the SPL, in the financial
segment. This document illustrates studies referring to the five major Brazilian banks. The key
element of this research is to present how the reuse is adopted inside financial sector and how this
practice contributes to the success of software projects.

An interesting example that pointed out the necessary use of reuse approach is illustrated by a specific
bank that executes one modification in ordinaries accounts and it was required modification into 72
systems. This problem was identified as a lack of planning in the reuse inside those systems.

2.3. Observed Aspects
The UBÁ approach focuses its development for a specific application domain as a grid computing
middleware. In other words, domain engineering for a broadly distributed system is not covered.

On the other hand, the research project presented in [16] illustrates that the SPL approach is not a key
element for those organizations. The functions of coupling and maintenance for the applications do not
consider a software product line, and also it exist a lack of reuse as macro paradigm.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

2

Understanding the former two contributions, which could have some intersection aspects with the
target configuration of our research, it was essential to conceive a differentiated contribution
considering a more generic distributed system environment.
 Therefore, an effort in which can be possible represent the domain engineering and application
instantiation for distributed system configurations, may answer our research question. As result, our
proposal should conceive to design and implement a software environment approach based on the SPL
paradigm.

It was not found in the literature a similar proposal, considering a real case study, in which a generic
distributed system had a support from the SPL with a high level of artifacts reuse.

3. Proposal

In this section, it is described the research proposal in terms of design and implementation of the
software product line approach for a real distributed system configuration. Thus, the section shows
how was the old development process for configuration, the validation for the job management system
and how was the reformulation from the old-fashioned to the new paradigm.

3.1. The Original Development Environment
The development of an application for any large distributed system configuration can be seen as a
complex process. As mentioned in [17], heterogeneity in terms of hardware, operating systems and
resource management systems (RMS) are three examples of key aspects to be considered for any
distributed project. As a result, elements such as graphic interfaces, network interfaces and also
programming middleware software packages are important to be analyzed.

The main contribution of this research work is to apply the SPL Smarty process in a real distributed
system project, which is being developed at the Research Distributed System Laboratory (LaPeSD), at
the Federal University of Santa Catarina (UFSC), in collaboration with a petroleum engineering
company.

As a result, the proposal is to contribute for the systematization of future developments considering
artifacts, components and architecture reuse.

In this context, each element (e.g. GUI, interfaces and RMS) could be translated to components
forming a common architecture known as domain engineering (DE). Afterwards, for any new product
will be possible to have an instance analysis for this new application engineering (AE) architecture,
designing a specialization for those no common parts. Through the utilization of the SPL approach, it
is possible to have a systematic process, adopting the reuse paradigm and also a planning procedure to
add these new components to the architecture. Important to observe, these features will be added into
the configuration without an extra effort.

However, to reach level of abstractions mentioned before, it was required changes in the actual
architecture. The original development environment was characterized as a tightly coupled
configuration and it was difficult apply the reuse and componentization techniques. Figure 1 shows a
macro idea, on how was the configuration.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

3

Figure 1. Macro view of the original development environment.

A meta-scheduler element has a key importance in the distributed configuration. This component
provides the interface between requirements from a user to a scheduler (RMS), in a specific cluster
configuration. Usually, the meta-scheduler is coined as the middleware of the configuration. The main
reason for this is based on the fact that each cluster has its own scheduler (e.g. Condor, OpenPBS and
LSF). Thus, the meta-scheduler is obliged to know each API from all schedulers and afterwards
realize all communications.

In a case of a new cluster added to the configuration, the middleware is informed and all elements
necessary to this communication should be provided by the middleware. Location, ports, components
and general descriptions are examples of elements necessary for all communications. Therefore, this is
one new component that should be aggregated to the middleware environment, and which also should
be available to interoperate with other existing components.

This contribution can be considered differentiated, because it proposes an approach which can be
translated in a systematic method, reusable and with previous planning using the SPL paradigm. As a
result, it will be possible to add components to the original distributed system architecture without
large changes for the middleware environment.

To reach the necessary transparency, it is necessary to process some changes into the original
middleware architecture. In other words, our contribution presents a new architecture approach with a
reusable function and components with variations points that were previously defined. These
definitions were designed foreseeing new functionalities, components and schedulers.

3.2. The New Development Environment
The ordinary process of software product line is shown in figure 2. In each phase of the process,
artifacts are produced and stored inside a SPL repository.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

4

Figure 2. SPL developing process.

The process starts with the requisite modeling technique which comprises the model elaboration and
requisite document, use cases models and a feature model. Use case models define SPL functions
requisites in terms of actors and use cases. It is also possible to realize the similarity and variability
model, in this research study, from the Smarty approach. Inside the features model, each item is a
requisite that defines one similarity or variability which could be translated into parameters.

In the requisite analysis phase, all SPL functional and non-functional requisites are specified. These
requisites are verified in the next steps to check their relations. Thus, it is established restrictions
through pre-requisites. Found all pre-requisites, these will guide the direction of the development, for
build the architecture and its validation.

3.2.1. Functional Requisites
1. RF001 – Advanced Resource Reservation.
Description: The system should be able to provide an advanced resource reservation function for a
task to be executed in the future with the required resources.
2. RF002 – Immediate Resource Reservation.
Description: The system should be able to provide immediate resource reservation function
3. RF003 – Resource Reservation Based on Characteristics.

3.2.2. Non-Functional Requisites
4. RNF001 – Add/Remove enhancements or functionalities with impact the actual structure.
Description: The structure should be able to support the add and remove functions to improve

existing functionalities of the architectures. It is also possible to add functionalities and components to
the environment without any prejudice for users and services. Example of such prejudice is the
communication between services.

5. RNF002 – Heterogeneous Services.
The architecture should support any operating system and hardware

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

5

Departing from functional and non-functional requisites it is possible to identify use cases that exist in
the domain model. Before the execution of the use cases, it is imperative to identify all possible actors
in the system as illustrated in figure 3.

Figure 3. Actors from the use case model.

All use cases require one refined action and specific actions from each actor, which should be
explained in their user cases.

The use case evolved in figure 4 presents innumerous variance points such as: “Define the main
architecture”; “Define GUI”; “Define meta-scheduler”; “Define LaPeSD products”; “Define RMS”. A
special fact to be considered is the occurrence of obliged activities as “Define rules” and optional
activities such as “Allows dynamic changes”.

In addition to the variation point “Define meta-scheduler”, there are two variants with stereotypes
“alternative XOR”. This indicates that only one option is possible to be chosen. The specification
exists as exclusive alternative relation inside the SMarty approach.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

6

Figure 4. Variability.

The architectural modeling is an important phase in the SPL approach. This phase is characterized by
a specification and definition of the architecture based on components. In this case, the analysis model
is addressed to the architecture model taking into consideration software patterns.

Figure 5 shows the proposed architecture after applying the SPL approach for the distributed system
environment. The vision layer is composed by the communication and job submission interfaces. In
addition, a user may select resources and necessary attributes. After this layer, it is presented the main
variation point from the architecture. This communication interface adopts as variation points some
general Communicators, such as Condor, SGE and LSF. These items if instantiated in a domain
engineering, it will be implemented as their RMS specifications. This new feature allows that new
RMS may be added to the architecture. The implementation of these interfaces is a product from the
LaPeSD.

4. Experimental Results
In this section it is presented some experimental results, after adopting the SPL approach in the
project. The evaluation of proposal was realized through study case in the real project from the
laboratory. Therefore, all information related to the architecture, components and artifacts are real.

The complexity of the environment was bypassed, first conceiving a model for the graphical user
interface in which was possible to submit jobs. As a result, our effort was to add a special focus in the
development, implementation and validation of this layer, due to its key importance.

The access to the environment was conceived through the use case from the interface layer. It was
utilized variation points and delimitated variances using the SPL. The SmartyProcess approach was
the choice which is represented by: web interface, cellular interface and WebService. These elements
will be the family products from the LaPeSD, considering the layer interface with the user.

In addition to previous interfaces, it was designed a communication interface abstraction with several
RMS that exist and could be possible for the architecture. Condor, SGE and LSF communicator and
variance were implemented. Each communicator specifies the communication form inside each RMS,
where each one has its commands.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

7

Figure 5. Proposed architecture.

The communication procedure was decoupled from the interface and created one structured in edge of
the middleware. As a result, components from the interface were turned into components and were
open to new interface designs or evolutions. An example, it could be seen in the future a new graphical
interface considering dynamic resource management adopting a fuzzy logic paradigm to hardware and
software selection.

A pool was realized among experts from the laboratory and it was possible to map messages that are
usually displayed to end users. These were implemented in the communication interface for the
graphical interfaces for each communicator as shown in table I.

It this phase of our work it was created a webservice, which made possible any implementation in the
upper layer (or GUI). Therefore, it was possible to utilize all messages from table I, where a Global or
a Local User was able to submit jobs, process some management tasks or a RMS.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

8

Table 1. EXISTING MESSAGES IN THE RMS COMMUNICATION.

Message Function SGE
Command

Condor
Command

submitJobSynch() This method is called
for a syn submission

Qsub Condor_submit

delJob() Use to cancel/delete
jobs

Qdel Condor_rm

getJobs() List job in execution
mode

Qstat Condor_q

listNodes() List information status
about nodes and
execution nodes

Qhost Condor_status

Afterwards, the communication interface which is represented by the Communication class inside the
webservice, receive a request this is forwarded to the CommunicationServiceImpl class . This latter
will verify which RMS will be manipulated. The submission through the user GUI requires an
indication of a RMS. As soon as a requests arrives at the webservice, following the request it knows
which class will be invoked, i.e. CondorService or SGEService. In case that the class CondorService
was chosen, this component will be communicating to the Local RMS and will be processed their own
specifications and requirements. As an example, if a job submission is required the specific command
of the Condor RMS will be executed, without the necessary knowledge of any syntax from the end
user.

5. Conclusions and Future Work

In this research work it was presented a design and implementation of the software project line
approach in a real distributed system project. The goal was to provide in a systematic fashion
components, also to create domain engineering. The aim was successfully reached.

Before the present effort, the original development environment was characterized as a tightly coupled
configuration and it was difficult apply the reuse and componentization techniques. One frequently
occurrence was that client asks for a specific feature and afterwards asks to remove this facility. After
sometime, the client claimed again for that specific module, but now the system could not support it.
In other words, in both sides, clients and developers, there were no culture of reuse. Therefore, the
utilization of the SPL approach has improved operations such as inclusion and remove of elements
from the distributed architecture. This objective was reached through a layer, where all requests were
pre-processed and redirected to an appropriate RMS module. As a final result, the conceived SLP
environment provides an enhancement artifact reuse approach where errors were lower and software
conformity was higher. In addition, characteristics such as an easier maintenance and less time to
develop features were verified in the new configuration.

As a future research plan, we are going to implement the SPL approach in ubiquitous part of the
software environment. In addition, we are going to develop a set of tools to provide some support and
automatization for the design of applications. It will be also important conceive and implement a tool
which may provide an enhanced option to select components and variants of distributed systems, thus
improving applications creation.

6. References

[1] SEI, Software Engineer Institute [online]. Available: http://www.sei.cmu.edu/, 2013
[2] Gimenes, I. M. S.; Travassos, Guilherme Horta. The Product Line Approach to Software
 Development. Ingrid Jansch Porto. Porto Alegre, Brazil, 2002.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

9

[3] Vasconcelos, A. One approach to support the creation of reference architectures based on
 domain analysis of Legacy Systems. Phd Thesis, Federal University Federal of Rio de

Janeiro, Rio de Janeiro, Brazil, 2007.
[4] Dantas, M. High Performance Distributed Computing: networks, clusters and computational
 grids.Rio de Janeiro: Axcel Books, Brazil, 2005.
[5] De Rose, C. A. F.; Ferreto, T. C., Improving Performance Analysis Using Resource
 Management Information, Springer Berlin/Heidelberg, 2003.
[6] Buyya, R. Grid Computing Info Centre (GRID Infoware). Available: http://gridcomputing.com,
 2011.
[7] Colvero, T. A.; Dantas, M.; Cunha, D. P. da. Environments clusters and computational grids:
 features, facilities and challenges. Criciúma: Unesc, Santa catarina, Brazil, 2005.
[8] Yeo, C. S. et al. Cluster Computing: High-Performance, High-Availability, and High-
 Throughput Processing on a Network of Computers. 2006
[9] Clements, P.; Northrop, L. Software Product Lines: Practices and Patterns. Boston, MA, USA:
 Addison-Wesley Longman Publishing Co., Inc., 2001.
[10] Northrop, L. M. SEIs Software Product Line Tents. IEEE Software, v. 19, n. 14, p. 32-41, 2002.
[11] Pohl, K.; Bockle, G.; Linden, F. J. V. D. Software Product Line Engineering: Fundations,
 Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag, 2005.
[12] Oliveira Junior, E. A.; Gimenes, Itana M. S.; Maldonado, José C. Systematic Management of
 Variability in UML-based Software Product Lines. Journal of Universal Computer Science,
 p. 1-20, 2010.
[13] Oliveira, A. Edson SystEM-PLA: A Method for Evaluating Product Line Architecture Software
 Based on UML, Instituto de Ciências Matemáticas e Computação, State University of São
 Paulo, Brazil, Ph.D. Thesis, 2011.
[14] Oliveira, D.; Rosa, N. Ubá: A Software Product Line Architecture for Grid -Oriented
 Middleware. Informatic Center, Fed. Univ. of Para, Santarem, Brazil.33rd Annual IEEE
 International Computer Software and Applications Conference, 2009.
[15] Bosch, J. Preface. In: The 2nd Groningen Workshop on Software Variability Management:
 software product families and populations, 2004, Groningen, The Netherlands. Proceedings.
 Groningen, The Netherlands, 2004.
[16] Reinehr, Sheila dos Santos. Systematic reuse of software and Software Product Lines in the
 financial sector: a case study in Brazil.2008. 327 f. Escola Politécnica, Programa de Pós-
 Graduação em Engenharia de Produção, Phd Thesis, São Paulo, Brazil,2008.
[17] Silva A P C and Dantas M A R 19th International Symposium on Computer Architecture and
 High Performance Computing, (SBAC-PAD'07) 143-150, 2007.
[18] Sugumaran, V.; Park, S.; Kang, K. C. Software Product Line Engineering. Communications of
 the ACM, v. 49, n. 12, 2006.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012008 doi:10.1088/1742-6596/540/1/012008

10

