
High-Dimensional Adaptive Particle Swarm Optimization on
Heterogeneous Systems

M P Wachowiak1, B B Sarlo, and A E Lambe Foster
Department of Computer Science and Mathematics
Nipissing University, North Bay, ON Canada, P1B 8L7

E-mail: markw@nipissingu.ca

Abstract. Much work has recently been reported in parallel GPU-based particle swarm
optimization (PSO). Motivated by the encouraging results of these investigations, while also
recognizing the limitations of GPU-based methods for big problems using a large amount of
data, this paper explores the efficacy of employing other types of parallel hardware for PSO.
Most commodity systems feature a variety of architectures whose high-performance
capabilities can be exploited. In this paper, high-dimensional problems and those that employ a
large amount of external data are explored within the context of heterogeneous systems. Large
problems are decomposed into constituent components, and analyses are undertaken of which
components would benefit from multi-core or GPU parallelism. The current study therefore
provides another demonstration that “supercomputing on a budget” is possible when subtasks
of large problems are run on hardware most suited to these tasks. Experimental results show
that large speedups can be achieved on high dimensional, data-intensive problems. Cost
functions must first be analysed for parallelization opportunities, and assigned hardware based
on the particular task.

1. Introduction
The literature on applying graphics processing units (GPUs) to Particle Swarm Optimization (PSO) is
increasing. This is not surprising, as PSO is a relatively simple technique that has shown remarkable
potential in solving a wide variety of problems in global optimization. PSO is a population-based
stochastic global optimization algorithm that can optimize a wide range of cost functions, including
large, complex ones [1, 2]. It simulates cooperative behaviour, as opposed to the competitive genetic
algorithm and evolutionary strategy paradigms, and has motivated a great deal of research [3].

The inherent parallelism of PSO can be mapped onto high performance computing (HPC) systems,
including distributed clusters [4] and, more recently, onto graphics processing units [5, 6]. Many
papers have recently appeared that employ GPUs for PSO [7, 8]. Originally designed for 3D graphics
rendering, GPUs are also ideal parallel processors for fine-grained, data-parallel, high-throughput and
streaming applications, and exceptionally large speedup can be achieved when computations can be
streamed onto them [5]. However, many very high-dimensional complex cost functions, such as those
used in “big-data” applications, require expensive linear algebra operations, and often require large
external data, such as transformation matrices, or large sets of empirical data. Due to the heavy
computation required to evaluate these cost functions, the limited amount of memory available on

1 To whom any correspondence should be addressed.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

GPUs, and CPU-to-GPU data transfer bottlenecks, some combination of CPU and GPU processing
would offer potential advantages.

Multicore technology for task-parallel medium-granularity tasks where fewer processing elements
perform more intense computations also offers efficiency gains [9]. Due to limited memory bandwidth
and inefficient memory management schemes, multicore processing at present offers only limited
speedups [10]. Consequently, many-core (tens or hundreds of cores), digital signal processors (DSPs),
acceleration processing units (APUs), field-programmable gate arrays (FPGAs) and other accelerators
will likely lead to great performance gains in the near future [11]. Comparisons of GPU and multicore
performance in PSO are also being investigated [6].

GPU and multicore HPC can be used in tandem, wherein each component works on tasks to which
it is best suited. These heterogeneous systems are progressively gaining a foothold in many scientific
and engineering applications (e.g. [12]). Heterogeneity is achieved by multicore parallelism
complemented with accelerators (e.g. GPUs, Cells, DSP chips). This approach is taken in the current
paper to increase the efficiency of high-dimensional and difficult global optimization of complex cost
functions, wherein parallelization is achieved according to Schnabel’s taxonomy [13]. Highly data-
parallel but computationally simple tasks were accelerated with GPUs, while more intensive
calculations were made more efficient through multicore processing. Assigning tasks to the different
types of processors, while intuitive, was verified by profiling analysis. This paper demonstrates that
implementing a heterogeneous, problem-specific approach can achieve good performance gains, and
address the shortcomings of using strictly multicore (not scalable, not ideal for very fine-grained tasks)
or GPU (not ideal for long computations requiring large data).

2. Adaptive Particle Swarm
The guiding principle of PSO is updating the D-dimensional positions of N independent “particles”
that explore the D-D space in search of an optimum solution. These updates are based upon the
progress of the search. Each particle’s velocity update at time t + 1 is updated as:

evaluationfunctionbestthe
 withparticlebestglobally theofEffect

best

1,0~factor
onacceleratiGlobal

22

effect)(localfound
positionbests'particleofEffect

best

1,0~factor
onacceleratiLocal

11

 velocityprevious
byaffectedInertia,particlefor velocity Updated

)()()()()()()1(
21

ttCttCttt i

U

i

ii

U

i

i

i xgxpvv (1)

Stochasticity, provided by random factors 1, 2 ~ U(0, 1), maintains diversity in the population.
After the new velocity is computed, the position of the i-th particle is updated as:

.11 ttt iii vxx (2)

Many variations of particle swarm have been proposed since its inception. Such variations include
hybridization with genetic and evolutionary operators (e.g. [14]), subpopulations [15; 16],
hybridization with other optimization methods [17], and adapting various components of the PSO
algorithm itself (e.g. [18]). A particularly promising approach is to adjust the inertial factor t = (t)
in Eq. 1 (see [19] for a discussion of these methods and references). In the current paper, a specific
adaptive PSO (henceforth, APSO) is considered, in which the inertial factor is related to particle
clustering [20]. Specifically, in each iteration t, the inertial factor is defined by:

.
1

1and,,
5.11
1)(

,1 1

2

minmax

min
6.2

N

ijj

D

k

k
j

k
ii

g
ft xx

N
d

dd
dd

e
 (3)

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

2

Here, the di represent the mean distance of particle xi to every other particle (dg for the globally best
particle), requiring a distance matrix to be computed. Also, dmin = min(di), dmax = max(di), i = 1, …, N,
and is an evolutionary factor calculated to determine the state of the search based on particle
clustering. In this formulation, [0, 1] so that () [0.4, 0.9). APSO further uses in a fuzzy
membership function to determine the current state of the search, with small values (< 0.3) generally
indicating a convergent state of the swarm, followed by exploitation (0.2 < < 0.6), exploration with
more global searching (0.4 < < 0.8), and large values (> 0.7) indicating that the swarm needs to
escape from local optima. The acceleration coefficients C1 (local) and C2 (global) are also modified on
this basis [20]. In the convergence state, “elitist learning”, where random dimensions of the globally
best particle are perturbed, is also employed to discourage premature convergence. APSO has shown
promise in both unimodal and multimodal problems, with adaptations based on particle positions and
current search state, rather than on the basis of time (iteration) alone.

3. Methods
In his seminal paper, Schnabel [13] lists three potential levels of parallelism in global optimization;
parallelization of: (1) the cost function; (2) any linear algebra operations, and; (3) the optimization
algorithm itself. Schnabel focused primarily on multiple-instruction-multiple-data (MIMD)
parallelism, indicating that single-instruction-multiple-data (SIMD) architectures are insufficiently
general due to conditionals, branching, etc. in the cost function. Although SIMD systems have
improved markedly since 1995, GPU-exclusive methods may not be conducive to evaluating many
expensive cost functions. Consequently, in this paper, cost function evaluation is primarily assigned to
CPUs, with SIMD (e.g. GPUs) used for linear algebra and high-throughput operations [13]. All
multicore parallelism was achieved with OpenMP.

3.1. Cost functions
Two cost functions, one 200D composite and one realistic (but simplified) problem from geophysics,
were optimized with heterogeneous APSO. Ground truth values for these functions were known.

3.1.1. Composition function (200D). Composition functions, weighted sums of transformed search
spaces for standard test functions (e.g. Rastrigin, Weierstrass, etc. [20]) were proposed to test PSO in
highly irregular, nonconvex space. These functions are characterized by multiple optima, and are
extremely difficult to optimize, except in very low dimensions (D < 10). The general definition for
these functions, fcomp(), is given as [21]:

2
1

2
,

1 2
expwhere,)(

m

D

k
dmd

m

M

m m

m
mmmbiascomp D

ox
wfwff oxTx . (4)

Here, M denotes the number of individual functions in the composition. Each weight is computed
for each individual function and for each particle on the basis of a standard deviation m for each of
the M functions, and f m(), m = 1, …, M, is fm() scaled by the max[fm()] within the search space and
by a constant, om is a vector of offsets of length D, Tm is a dense D D orthogonal matrix, and m is a
scaling constant for each individual function. In this paper, D = 200, and M = 5. The individual cost
functions are: {Rastrigin, Weierstrass, Ackley, Griewank, Weierstrass} (see [19, 21] for definitions).
Because of the dense linear transformation in 200D, the search space is very complex, and therefore
the goal is to determine a near-optimal solution, or at least a very good local optimum.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

3

3.1.2. Geostatic correction (20D). A synthetic 20D geophysics optimization problem was
implemented. In this problem, known as geostatic correction (GSC), subsurface images of geologic
data are constructed from seismic reflection surveys. Because of noise or differences in surface
materials, the images may become distorted, which may be corrected by shifts (“static corrections”).
This problem is very difficult due to its high degree of nonlinearity and the presence of many local
optima [22]. Genetic, evolutionary, and other approaches have been previously employed [22; 23].
The situation may be formulated mathematically as (see [22] for a more thorough description):

2

01

1

12

1

01

1

02
2,1,2,1

1,112,22

212,221,11
2,1,2,1

22,22

11,11

otherwise,
,

D

c

D

cc

Z

r

Z

r
ccrr

crcr

crcr
ccrr

ccr

ccr

pf

OAOA
AAOAOA

p

xBA
xBA

x

 (5)

Here, a matrix of base values, B55 20 consists of 20 plates (the number of dimensions) at 55 levels
deep, and an offset matrix, O55 20.

3.2. Parallelization of APSO
The entire APSO system was analysed to determine the most computationally intensive components,
and the potential parallelism of each component was assessed. A profiling tool, AMD CodeAnalyst,
collects samples uniformly as the program executes [24]. From the profiling results of the 200D
composition with N = 8192, the most time-intensive components were the distance matrix (about
57%), matrix multiplication (about 16%), and the Weierstrass evaluation (about 9%), followed by the
particle and weight update sections (each less than 1%). In the 20D geostatic correction problem, the
largest component was the cost function itself (about 99%), followed by the distance matrix (about
1%). It was therefore decided to investigate parallelization of: (1) particle updates (Eqs. 1-2); (2)
weight updates (Eq. 4); (3) the Weierstrass component to the composition cost functions (Eq. 4); (4)
matrix multiplication (Eq. 4), (5) distance matrix calculation (Eq. 3), and (6) geostatic correction cost
function (Eq. 5). These components are now described using Schnabel’s taxonomy.

3.2.1. Parallelization of the cost function. The composition function is parallelized through the matrix
multiplication (see below), and, because of the number of conditionals required, is not a candidate for
further parallelization. However, the Weierstrass component of these compositions requires a
moderate amount of computation, and was therefore parallelized. The geostatic correction problem is
a straightforward four-level nested loop, and was therefore analyzed for parallelization.

3.2.2. Parallelization of linear algebra operations. Each evaluation of the composition function
requires search space rotation (the dense Tm matrix in Eq. 4). The NVIDIA CUDA framework (used
in this paper) supplies a linear algebra toolkit, cuBLAS, implementing BLAS routines optimized for
the GPU. As a SIMD problem, matrix multiplication is an ideal task for the GPU.

3.2.3. Parallelization of the algorithm (distance matrix, weights updates, and particle updates).
Calculating the di in Eq. 3 requires a distance matrix (DM). In [20], a small number of particles (N =
20) was used, and, consequently, the calculation was not considered to be intensive. However,
forming a DM has O(N2) complexity, with (N2 –N)/2 distances to be calculated, and can be intensive
for large N. The DM can be parallelized via multicore by indexing the upper-triangular matrix. A

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

4

GPU-based method [25] was also implemented. Timing results for parallel methods were compared to
the two-level nested loop method that directly computes the upper-triangular DM efficiently on one
core, but, because of the load imbalance, cannot be easily parallelized. Weight and particle updates
are straightforward loop parallelizations.

3.3. CUDA implementation
GPU kernels (routines that run on the GPU) were developed in the NVIDIA CUDA (Compute Unified
Device Architecture) framework for GPU programming. CUDA also simplifies the transfer of
information between RAM and the GPU-specific RAM. Parallelization is based on a number assigned
to each thread. OpenCL, a specification from the Khronos Group, is an alternative framework that
supports a wide variety of devices, including GPUs, multicore, and FPGAs, and has also been used for
PSO parallelization by other researchers (e.g. [6]).

3.4. Experiments
Experiments were performed with populations of sizes N = 1024, 2048, 4096, and 8192 particles. For
the component trials described below, dimensions of D = 16, 128, and 1024 were analysed. APSO
trials were run on a computing cluster (SHARCNET) with characteristics of a commodity PC, as only
one server unit was employed. Each unit contains two quad-core CPUs (Intel E5430) running at 3.0
GHz with 8 GB RAM, connected to 2 GPU servers, each connected to one NVIDIA Tesla S1070
graphics card with 4 GB GPU memory.

3.4.1. Speedup of APSO components. Speedup results for each individual parallelized APSO
component described in Sections 3.2.1-3.2.3 were obtained as the mean of 100 tests. On the GPU, the
DM was computed with an efficient algorithm [25] and reduced on the CPU, as the average distances
(Eq. 3) were much more efficiently computed this way as opposed to GPU reduction.

3.4.2. Speedup of APSO experiments. Speedup results for full APSO trials for the two cost functions
were obtained for the following configurations: (1) multicore, with no GPU acceleration; (2)
composition function, multicore parallelization (including DM), cuBLAS acceleration for the search
space transformation; (3) multicore parallelization with GPU acceleration of the DM computation.

3.4.3. Timing results of APSO experiments. Computation times for 500-iteration trials were obtained
for: (1) no parallelization (1 core for all operations), and; (2) eight cores, GPU-accelerated DM
calculation, and GPU matrix multiplication (composition function).

4. Results
Both cost functions were successfully optimized by APSO (figure 1). Because of the complexity of
search space of the 200D composition function, a larger population size results in a better global
solution. The 20D GSC problem was successfully optimized with only 1024 particles, but, with more
realistic scenarios, the more complex cost function would benefit from larger N.

The individual APSO components were timed with 1, 2, 4, and 8 cores, and analysed for population
sizes of N = 1024, 2048, 4096, and 8192, and dimensions of D = 16, 128, and 1024. Speedup results
are shown in figures 2a-e, optimized cuBLAS matrix multiplication (composition) speedups are shown
in figure 2f, and multicore DM calculations in figure 2g.

The full APSO algorithm with CPU-based DM computation was run with the 200D composition
function with cuBLAS-accelerated rotational matrix multiplication (figure 3a). The 20D geostatic
correction function was run with the CPU-based DM technique (figure 3b). Finally, both cost
functions were run with the GPU-accelerated DM (and the GPU-accelerated matrix multiplication for
the composition function) (figures 3c-d). Timing results for two configurations – one core, no
parallelism vs. eight cores with GPU acceleration, are shown in Table 1. For the composition, speedup
is shown for (1) 8-core with cuBLAS on the GPU, and (2) 8-core with cuBLAS and DM on the GPU.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

5

For GSC, speedup is shown for (1) 8-core, and (2) 8-core with DM on the GPU. As their speedups
and percentage of total computation were both low, weight updates were not parallelized.

From these results, it is seen that the heterogeneous approach achieves better speedup than
multicore alone for the composition function. Because of their sizes, and given current limited GPU
memory and CPU-GPU bandwidth bottlenecks, these problems are not runnable exclusively on the
GPU, and, likely, other accelerators as well. GSC optimized faster with multicore (the problem is too
large to fit all on the GPU). Therefore, for large problems, such as those arising in “big data”
applications, analysis of the various optimization components, per Schnabel, leads to heterogeneous
solutions that achieve acceptable levels of performance and efficiency gains.

 1024 2048 4096 8192500

600

700

800

900

1000

Particles

Be
st

 f(
x)

 1024 2048 4096 8192-2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

-1.5 x 105

Particles

Be
st

 f(
x)

(a) 200D composition function. (b) 20D geostatic correction problem.
Figure 1. Best f(x) cost function values returned by the globally best particle with varying N.

1024 2048 4096 8192 1 2
4

8
0
1
2
3
4
5
6
7
8

CoresParticles

Sp
ee

du
p

16D
128D
1024D

1024 2048 4096 8192 1 2
4

8

0
1
2
3
4
5
6
7
8

Cores
Particles

Sp
ee

du
p

16D
128D
1024D

(a) Particle update. (b) Weight calculations (composition function).

1024 2048 4096 8192 1 2
4

8
0
1
2
3
4
5
6
7
8

CoresParticles

Sp
ee

du
p

16D
128D
1024D

1 2 4 80

2

4

6

8

Sp
ee

du
p

Cores

N = 1024
N = 2048
N = 4096
N = 8192

(c) Weierstrass function. (d) Geostatic correction cost function.

1024 2048 4096 8192 1 2
4

8

0
1
2
3
4
5
6
7
8

Cores
Particles

Sp
ee

du
p

16D
128D
1024D

1024 2048 4096 81920

5

10

15

20

25

30

Particles

Sp
ee

du
p

16D
128D
1024D

(e) Multicore matrix multiplication. (f) cuBLAS matrix multiplication.

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

6

1024 2048 4096 8192 1 2
4

80
1
2
3
4
5
6
7
8

Cores
Particles

Sp
ee

du
p

16D
128D
1024D

(g) Multicore distance matrix calculation.
Figure 2. Speedups for individual APSO components with varying N and D.

1 2 4 8
1

2

3

4

5

6

7

8

Cores

Sp
ee

du
p

N = 1024
N = 2048
N = 4096
N = 8192

1 2 4 81

2

3

4

5

6

7

8

Cores

Sp
ee

du
p

N = 1024
N = 2048
N = 4096
N = 8192

(a) Multicore, cuBLAS, 200D composition. (b) Multicore, 20D GSC.

1 2 4 81

2

3

4

5

6

7

8

Cores

Sp
ee

du
p

N = 1024
N = 2048
N = 4096
N = 8192

1 2 4 81

2

3

4

5

6

7

8

Cores

Sp
ee

du
p

N = 1024
N = 2048
N = 4096
N = 8192

(c) Multicore, cuBLAS GPU DM, composition. (d) Multicore, GPU DM, GSC.
Figure 3. APSO speedups.

5. Discussion
Although the speedups are consistent between trials using the GPU-accelerated DM and those using

multicore parallelization (figures 3a, c), the timings for the GPU-accelerated method are much better
than the multicore DM method (Table 1) for the high-dimensional composition, but are slightly worse
for the GSC. From the profiling results, it is seen that computing f(x) for GSC is the most intensive
operation, and overwhelms the expensive DM calculation. Because GSC is 20D, the overhead
incurred by data transfer slightly outweighs efficiency gains. For the 200D composition, the greater
amount of work results in better speedup. In any case, parallelization in one form or another is
required for DM. Additionally, although DM is a large part of APSO, there are other expensive
components as well (e.g. complex cost function evaluation). Computation times for APSO were
reduced from the single-core, no GPU configurations to the 8-core parallelized, with GPU-based DM
calculation configurations by rates of 6.72 – 7.75 for GSC, and 6.49 – 6.85 for the composition
function with cuBLAS matrix multiplication (see Table 1). Even better speedups are obtained when
comparing the fully parallelized composition (with cuBLAS acceleration and GPU-based DM
calculation) to the non-parallelized (single-core, no GPU) configuration, where speedups of 8.45 –
8.67 are achieved.

Cache size also has an effect on performance. Some speedup drops are seen in individual APSO
components for moderate and high dimensions (see figures 2a-c), likely because the small cache on the

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

7

CPU cannot keep larger problems in cache, resulting in accesses to slower RAM. It is also seen that,
in some cases, smaller N show a greater speedup than for larger populations (figures 2a-b). A plausible
explanation is that as the size of the problem increases, less cache memory can be used, forcing access
to higher, slower levels of cache, or even into RAM. However, the lower gains made by using
multicore are justified because if the GPU is exclusively utilized, the CPU would be mostly idle.
Furthermore, although the GPU has many cores, they are inherently weak and memory-limited vis-à-
vis the CPU, which limits them to certain types of parallel problems. As access to RAM is very slow,
required data may be preloaded, but only a small amount can fit into GPU memory.

Table 1. Mean (std. dev.) optimization time (seconds) for cost functions by number of particles.
 Particles
Cost Function / Configuration 1024 2048 4096 8192
GSC (1 CPU) 1050.37 ± 2.75 2125.61 ± 2.81 4329.69 ± 9.11 9004.92 ± 14.52

GSC (8 CPUs) 133.66 ± 0.28 273.73 ± 0.28 574.48 ± 0.81 1249.26 ± 1.17

GSC (8 CPUs-GPU DM) 135.57 ± 0.44 280.58 ± 0.57 597.20 ± 0.99 1340.92 ± 2.10

Speedup (8 CPUs/8 CPUs-GPU) 7.86 / 7.75 7.76 / 7.58 7.54 / 7.25 7.21 / 6.72

Comp. cuBLAS (1 CPU) 1149.52 ± 10.70 2454.29 ± 24.88 5483.02 ± 11.53 13460.55 ± 43.68

Comp. cuBLAS (8 CPUs) 178.87 ± 2.22 377.90 ± 3.80 844.23 ± 2.24 2067.58 ± 9.60

Comp cuBLAS (8 CPUs-GPU DM) 177.11 ± 0.50 374.80 ± 1.74 831.13 ± 5.97 1964.22 ± 8.75

Speedup (8 CPUs/8 CPUs-GPU) 6.42 / 6.49 6.49 / 6.55 6.49 / 6.60 6.51 / 6.85

Composition (1 CPU) 1535.99 ± 16.40 3206.76 ± 5.55 7060.97 ± 85.63 16588.32 ± 140.65

Composition (8 CPUs) 224.88 ± 1.02 471.10 ± 3.53 1028.84 ± 4.67 2434.49 ± 5.80

Composition (8 CPUs-GPU DM) 177.11 ± 0.50 374.80 ± 1.74 831.13 ± 5.97 1964.22 ± 8.75

Speedup (8 CPUs/8 CPUs-GPU) 6.83 / 8.67 6.81 / 8.56 6.86 / 8.50 6.81 / 8.45

6. Conclusion
The results presented in this paper are encouraging for applying heterogeneous computing to difficult
global optimization problems using PSO. However, especially as evidenced in the GSC results, one
cannot rely on GPU acceleration alone, and the key to increased multicore improvement is tighter
memory-CPU integration [10]. Increasing CPU-GPU integration may reduce or eliminate the data
transfer bottleneck. It is expected that in the near future, many-core chips and hybrid CPU/GPU
processors, as well as greater exploitation of DSP and FPGA capabilities, will lead to further
efficiency improvements in computationally-intensive applications, such as high-dimensional global
optimization. These heterogeneous frameworks will also be instrumental in new “big-data”
applications, so that “big-data supercomputing on a budget” will be more attainable.

Future work will include further improving the robustness and efficiency of PSO. For the lower-
dimensional GSC problem, the effect of decreasing the population size and increasing the number of
iterations to the overall efficiency will be assessed. For all problems, after 500 iterations, the
population size can be decreased, or an efficient local method (e.g. Powell’s method, multidirectional
search) can be used to refine the best optimum found by APSO [26]. In addition, the intensive nested
loop GSC cost function will be revisited for possible GPU execution. In future GPUs and other
accelerators, it is expected that tighter accelerator/CPU connections will alleviate some of the
bandwidth difficulties currently experienced in large problems. Finally, although PSO is robust for

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

8

many classes of problems, many advanced techniques, including surrogate response surface methods
and those using gradient information, will also be analyzed for efficiency gains using heterogeneous
hardware, especially many-core systems with GPU or DSP acceleration.

Acknowledgments
The authors thank Dr. Renata Wachowiak-Smolíková and Devin Rotondo for helpful comments and
criticisms. This work was supported by SHARCNET facilities (www.sharcnet.ca). The authors are
supported by the Natural Sciences and Engineering Research Council of Canada (MPW, #386586-
2011).

References
[1] Blum C and Merkle D 2008 Swarm Intelligence: Introduction and Applications (New York:

 Springer-Verlag)
[2] Engelbrecht A P 2006 Fundamentals of Computational Swarm Intelligence (New Jersey: John

 Wiley & Sons)
[3] Schutte J F and Groenwold A A 2005 J Global. Optim. 31 93–108
[4] Schutte J F, Reinbolt J A, Fregly B J, Haftka R T and George A D 2004 Int. J. Numer. Meth.

 Eng. 61(13) 2296–315
[5] Hung Y and Wang W 2012 Optimization Methods and Software 27 33-51
[6] Cagnoni S, Bacchini A and Mussi L 2012 Applications of Evolutionary Computation 7248 406-

 415
[7] Mussi L, Daolio F and Cagnoni S 2010 Information Sciences 181 4642-57
[8] Wachowiak M P and Lambe Foster A E 2012 J. Phys.: Conf. Ser. 385
[9] Slabaugh G, Boyes R and Yang X 2010 IEEE Signal Processing Magazine 27-2 134-8
[10] Moore S K 2008 IEEE Spectrum Nov 15
[11] Moore S K 2011 IEEE Spectrum (New York: Institute of Electrical and Electronics Engineers)

Jan 40
[12] Kindratenko V V and Trancoso P 2011 Computing in Science & Engineering 13 92-5
[13] Schnabel R 1995 Parallel Computing 21 875-905
[14] Shi X, Liang Y, Lee H, Lu C and Wang L 2005 Information Processing Letters 93 255-61
[15] Lovbjerg M, Rasmussen T K and Krink T 2001 Proc. 3rd Genetic Evolutionary Computation

 Conf. (California) 469-76
[16] Veeramachaneni K, Peram T, Mohan C and Osadiciw L A 2003 Proc. Genetic and Evolutionary

Computation Conf. 2003 (Illinois) 110-21
[17] Montes De Oca M A, Stutzle T, Birattari M and Dorigo M 2009 IEEE Transactions on

 Evolutionary Computation 13 1120-32
[18] Banks A, Vincent J and Anyakoha C 2008 Natural Computing 7.1 109–24
[19] Nickabadi A, Ebadzadeh M M and Safabakhsh R 2011 Applied Soft Computing 11 3658-70
[20] Zhan Z-H, Zhang J, Li Y and Chung H S-H 2009 IEEE Transactions on Systems, Man, and

 Cybernetics, Part B (Cybernetics) 39.6 1362-81
[21] Liang J, Ponnuthurai J, Suganthan N and Deb K 2005 Proc. 2005 IEEE In Swarm Intelligence

 Symposium (California) 68-75
[22] Mathias K E, Whitley D D, Stork C and Kusuma T 1994 Proc. of the First IEEE Conf. on IEEE

 World Congress on Computational Intelligence (Florida) 1 356-61
[23] Whitley D, Lunacek M and Sokolov A 2006 Lecture Notes in Computer Science 4193 988-997
[24] Moore R 2011 IS&T/SPIE Electronic Imaging (pp. 78720L-78720L)
[25] Chang D, Jones N A, Li D, Ouyang M, Ragade R K 2008 Proc. of the IASTED Int. Symposium

 on Computational Biology and Bioinformatics 278-283.
[26] Wachowiak M P and Peters T M 2006 IEEE Trans Inform. Tech Bio 10(2) 344-53

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

9

