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Abstract. Much work has recently been reported in parallel GPU-based particle swarm 
optimization (PSO).  Motivated by the encouraging results of these investigations, while also 
recognizing the limitations of GPU-based methods for big problems using a large amount of 
data, this paper explores the efficacy of employing other types of parallel hardware for PSO.  
Most commodity systems feature a variety of architectures whose high-performance 
capabilities can be exploited.  In this paper, high-dimensional problems and those that employ a 
large amount of external data are explored within the context of heterogeneous systems.  Large 
problems are decomposed into constituent components, and analyses are undertaken of which 
components would benefit from multi-core or GPU parallelism.  The current study therefore 
provides another demonstration that “supercomputing on a budget” is possible when subtasks 
of large problems are run on hardware most suited to these tasks.  Experimental results show 
that large speedups can be achieved on high dimensional, data-intensive problems.  Cost 
functions must first be analysed for parallelization opportunities, and assigned hardware based 
on the particular task. 

1. Introduction 
The literature on applying graphics processing units (GPUs) to Particle Swarm Optimization (PSO) is 
increasing.  This is not surprising, as PSO is a relatively simple technique that has shown remarkable 
potential in solving a wide variety of problems in global optimization. PSO is a population-based 
stochastic global optimization algorithm that can optimize a wide range of cost functions, including 
large, complex ones [1, 2].  It simulates cooperative behaviour, as opposed to the competitive genetic 
algorithm and evolutionary strategy paradigms, and has motivated a great deal of research [3].    

The inherent parallelism of PSO can be mapped onto high performance computing (HPC) systems, 
including distributed clusters [4] and, more recently, onto graphics processing units  [5, 6].  Many 
papers have recently appeared that employ GPUs for PSO [7, 8].  Originally designed for 3D graphics 
rendering, GPUs are also ideal parallel processors for fine-grained, data-parallel, high-throughput and 
streaming applications, and exceptionally large speedup can be achieved when computations can be 
streamed onto them [5].  However, many very high-dimensional complex cost functions, such as those 
used in “big-data” applications, require expensive linear algebra operations, and often require large 
external data, such as transformation matrices, or large sets of empirical data.  Due to the heavy 
computation required to evaluate these cost functions, the limited amount of memory available on 
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GPUs, and CPU-to-GPU data transfer bottlenecks, some combination of CPU and GPU processing 
would offer potential advantages.  

Multicore technology for task-parallel medium-granularity tasks where fewer processing elements 
perform more intense computations also offers efficiency gains [9].  Due to limited memory bandwidth 
and inefficient memory management schemes, multicore processing at present offers only limited 
speedups [10].  Consequently, many-core (tens or hundreds of cores), digital signal processors (DSPs), 
acceleration processing units (APUs), field-programmable gate arrays (FPGAs) and other accelerators 
will likely lead to great performance gains in the near future [11].  Comparisons of GPU and multicore 
performance in PSO are also being investigated [6].     

GPU and multicore HPC can be used in tandem, wherein each component works on tasks to which 
it is best suited.  These heterogeneous systems are progressively gaining a foothold in many scientific 
and engineering applications (e.g. [12]).  Heterogeneity is achieved by multicore parallelism 
complemented with accelerators (e.g. GPUs, Cells, DSP chips).  This approach is taken in the current 
paper to increase the efficiency of high-dimensional and difficult global optimization of complex cost 
functions, wherein parallelization is achieved according to Schnabel’s taxonomy [13].  Highly data-
parallel but computationally simple tasks were accelerated with GPUs, while more intensive 
calculations were made more efficient through multicore processing.  Assigning tasks to the different 
types of processors, while intuitive, was verified by profiling analysis.  This paper demonstrates that 
implementing a heterogeneous, problem-specific approach can achieve good performance gains, and 
address the shortcomings of using strictly multicore (not scalable, not ideal for very fine-grained tasks) 
or GPU (not ideal for long computations requiring large data).        

2. Adaptive Particle Swarm 
The guiding principle of PSO is updating the D-dimensional positions of N independent “particles” 
that explore the D-D space in search of an optimum solution.  These updates are based upon the 
progress of the search.  Each particle’s velocity update at time t + 1 is updated as:  
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Stochasticity, provided by random factors 1, 2 ~ U(0, 1), maintains diversity in the population. 
After the new velocity is computed, the position of the i-th particle is updated as:  

.11 ttt iii vxx  (2) 

Many variations of particle swarm have been proposed since its inception.  Such variations include 
hybridization with genetic and evolutionary operators (e.g. [14]), subpopulations [15; 16], 
hybridization with other optimization methods [17], and adapting various components of the PSO 
algorithm itself (e.g. [18]).  A particularly promising approach is to adjust the inertial factor t = (t)
in Eq. 1 (see [19] for a discussion of these methods and references).  In the current paper, a specific 
adaptive PSO (henceforth, APSO) is considered, in which the inertial factor is related to particle 
clustering [20].  Specifically, in each iteration t, the inertial factor is defined by: 
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Here, the di represent the mean distance of particle xi to every other particle (dg for the globally best 
particle), requiring a distance matrix to be computed.  Also, dmin = min(di), dmax = max(di), i = 1, …, N,
and  is an evolutionary factor calculated to determine the state of the search based on particle 
clustering. In this formulation,  [0, 1] so that ( )  [0.4, 0.9).  APSO further uses  in a fuzzy 
membership function to determine the current state of the search, with small values (  < 0.3) generally 
indicating a convergent state of the swarm, followed by exploitation (0.2 <  < 0.6), exploration with 
more global searching (0.4 <  < 0.8), and large values (  > 0.7) indicating that the swarm needs to 
escape from local optima.  The acceleration coefficients C1 (local) and C2 (global) are also modified on 
this basis [20].  In the convergence state, “elitist learning”, where random dimensions of the globally 
best particle are perturbed, is also employed to discourage premature convergence.  APSO has shown 
promise in both unimodal and multimodal problems, with adaptations based on particle positions and 
current search state, rather than on the basis of time (iteration) alone.   

3. Methods 
In his seminal paper, Schnabel [13] lists three potential levels of parallelism in global optimization; 
parallelization of: (1) the cost function; (2) any linear algebra operations, and; (3) the optimization 
algorithm itself.  Schnabel focused primarily on multiple-instruction-multiple-data (MIMD) 
parallelism, indicating that single-instruction-multiple-data (SIMD) architectures are insufficiently 
general due to conditionals, branching, etc. in the cost function.  Although SIMD systems have 
improved markedly since 1995, GPU-exclusive methods may not be conducive to evaluating many 
expensive cost functions.  Consequently, in this paper, cost function evaluation is primarily assigned to 
CPUs, with SIMD (e.g. GPUs) used for linear algebra and high-throughput operations [13].  All 
multicore parallelism was achieved with OpenMP. 

3.1. Cost functions 
Two cost functions, one 200D composite and one realistic (but simplified) problem from geophysics, 
were optimized with heterogeneous APSO.  Ground truth values for these functions were known. 

3.1.1. Composition function (200D). Composition functions, weighted sums of transformed search 
spaces for standard test functions (e.g. Rastrigin, Weierstrass, etc. [20]) were proposed to test PSO in 
highly irregular, nonconvex space.  These functions are characterized by multiple optima, and are 
extremely difficult to optimize, except in very low dimensions (D < 10).  The general definition for 
these functions, fcomp( ), is given as [21]:
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Here, M denotes the number of individual functions in the composition.  Each weight is computed 
for each individual function and for each particle on the basis of a standard deviation m for each of 
the M functions, and f m( ), m = 1, …, M, is fm( ) scaled by the max[fm( )] within the search space and 
by a constant, om is a vector of offsets of length D, Tm is a dense D D orthogonal matrix, and m is a 
scaling constant for each individual function.  In this paper, D = 200, and M = 5.  The individual cost 
functions are: {Rastrigin, Weierstrass, Ackley, Griewank, Weierstrass} (see [19, 21] for definitions). 
Because of the dense linear transformation in 200D, the search space is very complex, and therefore 
the goal is to determine a near-optimal solution, or at least a very good local optimum.
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3.1.2. Geostatic correction (20D). A synthetic 20D geophysics optimization problem was 
implemented.  In this problem, known as geostatic correction (GSC), subsurface images of geologic 
data are constructed from seismic reflection surveys.  Because of noise or differences in surface 
materials, the images may become distorted, which may be corrected by shifts (“static corrections”).  
This problem is very difficult due to its high degree of nonlinearity and the presence of many local 
optima [22].  Genetic, evolutionary, and other approaches have been previously employed [22; 23].  
The situation may be formulated mathematically as (see [22] for a more thorough description):
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Here, a matrix of base values, B55 20 consists of 20 plates (the number of dimensions) at 55 levels 
deep, and an offset matrix, O55 20.

3.2. Parallelization of APSO 
The entire APSO system was analysed to determine the most computationally intensive components, 
and the potential parallelism of each component was assessed. A profiling tool, AMD CodeAnalyst,
collects samples uniformly as the program executes [24].  From the profiling results of the 200D 
composition with N = 8192, the most time-intensive components were the distance matrix (about 
57%), matrix multiplication (about 16%), and the Weierstrass evaluation (about 9%), followed by the 
particle and weight update sections (each less than 1%).  In the 20D geostatic correction problem, the 
largest component was the cost function itself (about 99%), followed by the distance matrix (about 
1%).  It was therefore decided to investigate parallelization of: (1) particle updates (Eqs. 1-2); (2) 
weight updates (Eq. 4); (3) the Weierstrass component to the composition cost functions (Eq. 4); (4) 
matrix multiplication (Eq. 4), (5) distance matrix calculation (Eq. 3), and (6) geostatic correction cost 
function (Eq. 5).  These components are now described using Schnabel’s taxonomy. 

3.2.1. Parallelization of the cost function. The composition function is parallelized through the matrix 
multiplication (see below), and, because of the number of conditionals required, is not a candidate for 
further parallelization.  However, the Weierstrass component of these compositions requires a 
moderate amount of computation, and was therefore parallelized.  The geostatic correction problem is 
a straightforward four-level nested loop, and was therefore analyzed for parallelization. 

3.2.2. Parallelization of linear algebra operations. Each evaluation of the composition function 
requires search space rotation (the dense Tm matrix in Eq. 4).  The NVIDIA CUDA framework (used 
in this paper) supplies a linear algebra toolkit, cuBLAS, implementing BLAS routines optimized for 
the GPU.  As a SIMD problem, matrix multiplication is an ideal task for the GPU. 

3.2.3. Parallelization of the algorithm (distance matrix, weights updates, and particle updates). 
Calculating the di in Eq. 3 requires a distance matrix (DM).  In [20], a small number of particles (N =  
20) was used, and, consequently, the calculation was not considered to be intensive.  However, 
forming a DM has O(N2) complexity, with (N2 –N)/2 distances to be calculated, and can be intensive 
for large N.  The DM can be parallelized via multicore by indexing the upper-triangular matrix.  A 

High Performance Computing Symposium 2013 (HPCS 2013) IOP Publishing
Journal of Physics: Conference Series 540 (2014) 012007 doi:10.1088/1742-6596/540/1/012007

4



GPU-based method [25] was also implemented.  Timing results for parallel methods were compared to 
the two-level nested loop method that directly computes the upper-triangular DM efficiently on one 
core, but, because of the load imbalance, cannot be easily parallelized.  Weight and particle updates 
are straightforward loop parallelizations.

3.3. CUDA implementation 
GPU kernels (routines that run on the GPU) were developed in the NVIDIA CUDA (Compute Unified 
Device Architecture) framework for GPU programming.  CUDA also simplifies the transfer of 
information between RAM and the GPU-specific RAM.  Parallelization is based on a number assigned 
to each thread.  OpenCL, a specification from the Khronos Group, is an alternative framework that 
supports a wide variety of devices, including GPUs, multicore, and FPGAs, and has also been used for 
PSO parallelization by other researchers (e.g. [6]). 

3.4. Experiments 
Experiments were performed with populations of sizes N = 1024, 2048, 4096, and 8192 particles.  For 
the component trials described below, dimensions of D = 16, 128, and 1024 were analysed.  APSO 
trials were run on a computing cluster (SHARCNET) with characteristics of a commodity PC, as only 
one server unit was employed.   Each unit contains two quad-core CPUs (Intel E5430) running at 3.0 
GHz with 8 GB RAM, connected to 2 GPU servers, each connected to one NVIDIA Tesla S1070 
graphics card with 4 GB GPU memory. 

3.4.1. Speedup of APSO components. Speedup results for each individual parallelized APSO 
component described in Sections 3.2.1-3.2.3 were obtained as the mean of 100 tests.  On the GPU, the 
DM was computed with an efficient algorithm [25] and reduced on the CPU, as the average distances 
(Eq. 3) were much more efficiently computed this way as opposed to GPU reduction. 

3.4.2. Speedup of APSO experiments. Speedup results for full APSO trials for the two cost functions 
were obtained for the following configurations:  (1) multicore, with no GPU acceleration; (2) 
composition function, multicore parallelization (including DM), cuBLAS acceleration for the search 
space transformation; (3) multicore parallelization with GPU acceleration of the DM computation.

3.4.3. Timing results of APSO experiments. Computation times for 500-iteration trials were obtained 
for: (1) no parallelization (1 core for all operations), and; (2) eight cores, GPU-accelerated DM 
calculation, and GPU matrix multiplication (composition function).

4. Results 
Both cost functions were successfully optimized by APSO (figure 1).  Because of the complexity of 
search space of the 200D composition function, a larger population size results in a better global 
solution.  The 20D GSC problem was successfully optimized with only 1024 particles, but, with more 
realistic scenarios, the more complex cost function would benefit from larger N.

The individual APSO components were timed with 1, 2, 4, and 8 cores, and analysed for population 
sizes of N = 1024, 2048, 4096, and 8192, and dimensions of D = 16, 128, and 1024.  Speedup results 
are shown in figures 2a-e, optimized cuBLAS matrix multiplication (composition) speedups are shown 
in figure 2f, and multicore DM calculations in figure 2g. 

The full APSO algorithm with CPU-based DM computation was run with the 200D composition 
function with cuBLAS-accelerated rotational matrix multiplication (figure 3a).  The 20D geostatic 
correction function was run with the CPU-based DM technique (figure 3b).  Finally, both cost 
functions were run with the GPU-accelerated DM (and the GPU-accelerated matrix multiplication for 
the composition function) (figures 3c-d).  Timing results for two configurations – one core, no 
parallelism vs. eight cores with GPU acceleration, are shown in Table 1.  For the composition, speedup 
is shown for (1) 8-core with cuBLAS on the GPU, and (2) 8-core with cuBLAS and DM on the GPU.  
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For GSC, speedup is shown for (1) 8-core, and (2) 8-core with DM on the GPU.  As their speedups 
and percentage of total computation were both low, weight updates were not parallelized. 

From these results, it is seen that the heterogeneous approach achieves better speedup than 
multicore alone for the composition function.  Because of their sizes, and given current limited GPU 
memory and CPU-GPU bandwidth bottlenecks, these problems are not runnable exclusively on the 
GPU, and, likely, other accelerators as well.  GSC optimized faster with multicore (the problem is too 
large to fit all on the GPU).  Therefore, for large problems, such as those arising in “big data” 
applications, analysis of the various optimization components, per Schnabel, leads to heterogeneous 
solutions that achieve acceptable levels of performance and efficiency gains. 
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Figure 1. Best f(x) cost function values returned by the globally best particle with varying N.
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Figure 2. Speedups for individual APSO components with varying N and D.
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Figure 3. APSO speedups. 

5. Discussion 
Although the speedups are consistent between trials using the GPU-accelerated DM and those using 

multicore parallelization (figures 3a, c), the timings for the GPU-accelerated method are much better 
than the multicore DM method (Table 1) for the high-dimensional composition, but are slightly worse 
for the GSC.  From the profiling results, it is seen that computing f(x) for GSC is the most intensive 
operation, and overwhelms the expensive DM calculation.  Because GSC is 20D, the overhead 
incurred by data transfer slightly outweighs efficiency gains.  For the 200D composition, the greater 
amount of work results in better speedup.  In any case, parallelization in one form or another is 
required for DM.  Additionally, although DM is a large part of APSO, there are other expensive 
components as well (e.g. complex cost function evaluation).   Computation times for APSO were 
reduced from the single-core, no GPU configurations to the 8-core parallelized, with GPU-based DM 
calculation configurations by rates of 6.72 – 7.75 for GSC, and 6.49 – 6.85 for the composition 
function with cuBLAS matrix multiplication (see Table 1).  Even better speedups are obtained when 
comparing the fully parallelized composition (with cuBLAS acceleration and GPU-based DM 
calculation) to the non-parallelized (single-core, no GPU) configuration, where speedups of 8.45 – 
8.67 are achieved. 

Cache size also has an effect on performance.  Some speedup drops are seen in individual APSO 
components for moderate and high dimensions (see figures 2a-c), likely because the small cache on the 
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CPU cannot keep larger problems in cache, resulting in accesses to slower RAM.  It is also seen that, 
in some cases, smaller N show a greater speedup than for larger populations (figures 2a-b). A plausible 
explanation is that as the size of the problem increases, less cache memory can be used, forcing access 
to higher, slower levels of cache, or even into RAM.  However, the lower gains made by using 
multicore are justified because if the GPU is exclusively utilized, the CPU would be mostly idle.  
Furthermore, although the GPU has many cores, they are inherently weak and memory-limited vis-à-
vis the CPU, which limits them to certain types of parallel problems.  As access to RAM is very slow, 
required data may be preloaded, but only a small amount can fit into GPU memory. 

Table 1. Mean (  std. dev.) optimization time (seconds) for cost functions by number of particles.
 Particles 
Cost Function / Configuration 1024 2048 4096 8192
GSC (1 CPU) 1050.37 ± 2.75 2125.61 ± 2.81 4329.69 ± 9.11 9004.92 ± 14.52

GSC (8 CPUs) 133.66 ± 0.28 273.73 ± 0.28 574.48 ± 0.81 1249.26 ± 1.17

GSC (8 CPUs-GPU DM) 135.57 ± 0.44 280.58 ± 0.57 597.20 ± 0.99 1340.92 ± 2.10

Speedup (8 CPUs/8 CPUs-GPU) 7.86 / 7.75 7.76 / 7.58 7.54 / 7.25 7.21 / 6.72

Comp. cuBLAS (1 CPU) 1149.52 ± 10.70 2454.29 ± 24.88 5483.02 ± 11.53 13460.55 ± 43.68

Comp. cuBLAS (8 CPUs) 178.87 ± 2.22 377.90 ± 3.80 844.23 ± 2.24 2067.58 ± 9.60

Comp cuBLAS (8 CPUs-GPU DM) 177.11 ± 0.50 374.80 ± 1.74 831.13 ± 5.97 1964.22 ± 8.75

Speedup (8 CPUs/8 CPUs-GPU) 6.42 / 6.49 6.49 / 6.55 6.49 / 6.60 6.51 / 6.85

Composition (1 CPU) 1535.99 ± 16.40 3206.76 ± 5.55 7060.97 ± 85.63 16588.32 ± 140.65

Composition (8 CPUs) 224.88 ± 1.02 471.10 ± 3.53 1028.84 ± 4.67 2434.49 ± 5.80

Composition (8 CPUs-GPU DM) 177.11 ± 0.50 374.80 ± 1.74 831.13 ± 5.97 1964.22 ± 8.75

Speedup (8 CPUs/8 CPUs-GPU) 6.83 / 8.67 6.81 / 8.56 6.86 / 8.50 6.81 / 8.45

6. Conclusion 
The results presented in this paper are encouraging for applying heterogeneous computing to difficult 
global optimization problems using PSO.  However, especially as evidenced in the GSC results, one 
cannot rely on GPU acceleration alone, and the key to increased multicore improvement is tighter 
memory-CPU integration [10].  Increasing CPU-GPU integration may reduce or eliminate the data 
transfer bottleneck.  It is expected that in the near future, many-core chips and hybrid CPU/GPU 
processors, as well as greater exploitation of DSP and FPGA capabilities, will lead to further 
efficiency improvements in computationally-intensive applications, such as high-dimensional global 
optimization.  These heterogeneous frameworks will also be instrumental in new “big-data” 
applications, so that “big-data supercomputing on a budget” will be more attainable.   

Future work will include further improving the robustness and efficiency of PSO.  For the lower-
dimensional GSC problem, the effect of decreasing the population size and increasing the number of 
iterations to the overall efficiency will be assessed.  For all problems, after 500 iterations, the 
population size can be decreased, or an efficient local method (e.g. Powell’s method, multidirectional 
search) can be used to refine the best optimum found by APSO [26].  In addition, the intensive nested 
loop GSC cost function will be revisited for possible GPU execution.  In future GPUs and other 
accelerators, it is expected that tighter accelerator/CPU connections will alleviate some of the 
bandwidth difficulties currently experienced in large problems.  Finally, although PSO is robust for 
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many classes of problems, many advanced techniques, including surrogate response surface methods 
and those using gradient information, will also be analyzed for efficiency gains using heterogeneous 
hardware, especially many-core systems with GPU or DSP acceleration.  
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