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Abstract. Orbiting spacecraft will always be affected by the space environment through their 

interactions. The main trigger depends on the variability of the radiation environment around the 

spacecraft such as galactic cosmic rays, solar particle events and the trapped particles. In the low-

Earth orbit (LEO), the trapped particles in the radiation belts play a crucial role in affecting the 

spacecraft in any orbit. The common effects of radiation on spacecraft are charging where some 

spacecraft components accumulate electric charge from their environment which in turn damaged the 

spacecraft systems. In addition, space weather will create a stream of charged particles that are 

associated with solar flares and coronal mass ejections. In this paper, we study the effects of solar 

radiation on a low orbiting spacecraft (LEO) that would be applied to the equatorial region. Radiation 

effects in microelectronic components are also discussed. These effects in the radiation environment 

on an LEO spacecraft are very important in design and testing to mitigate and protect the system from 

serious damages. 

 

 

1. Introduction 

The failure of Malaysian RazakSat-1 in orbit gives us a stern warning that we need to accommodate 

the impact of the trapped particles near the spacecraft in the development of a Low-Earth Orbit (LEO)-

Equatorial. RazakSat-1 is the second remote sensing near equatorial orbit (NEqO) satellite launched 

on 14 July 2009 after TiungSat-1. The satellite was designed to operate with a low inclination orbit (9 

degrees) at altitude of 685 km, which intended to provide greatly increased coverage of Malaysia with 

a mission lifetime of 3 years. Unfortunately, they were confronted with an anomaly and terminated in 

their orbit on 30 August 2010. The cause of the failure is still a mystery. However, we expect that the 

equatorial orbit makes it trapped in the particle radiation hazards of the South Atlantic Anomaly 

(SAA). SAA is a part of the inner radiation belt that due to the offset of Earth’ magnetic poles and 

geographic poles lead close to the Earth’s atmosphere. SAA is centered in Brazil sky lies from -90° to 

+40° of longitude and from 0° to -50° of latitude. SAAs are mainly contained of charged particles in 

several levels of energy up to 102 keV for electrons and 102 MeV for protons. These particles can harm 

spacecraft that passed through, especially for LEO orbit [1, 2]. 

The development of LEO-Equatorial orbit satellite is very important for Equatorial countries, 

which will increase daily coverage the region than the polar satellite. The challenge is faces more 

radiation hazard impact rather than the polar satellite because it more frequent passes SAA, and 

consequently, the exposure time of the trapped particle radiation is longer than the polar satellite. 

Some sophisticated space weather hazard information system, such as SPENVIS [3] has been 

developed to simulate space environment hazard. Horne et al. [4] studied the forecasting of high-

energy trapped particle in the outer radiation belt area using SPACECAST. Particularly in the inner of 

radiation trapped particle, models based on physics-magneto hydrodynamic (e.g., [5]) and statistical 

(e.g. [6]) framework has been employed. We have employed the spatio-temporal hierarchical Bayesian 

(STHB) model to preliminary forecast the daily trapped particle over the SAA region [7] by applying a 

Kriging interpolation technique to make the contour distribution map of particle flux in the geographic 

coordinate [8] and the result was compared with NOAA map. 
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The purpose of this paper is attempted to study the impact of space radiation hazard in an LEO-

Equatorial orbit environment. Due to advantages development of spacecraft in these environments, the 

radiation damage, total dose and radiation flux, and kind of device loaded should be clearly quantified.  

As in [9], the major radiation damage can be come from (a) cosmic rays in all directions, which 

majority consisting of protons; (b) solar particle events come from the sun direction which consist of a 

large flux of high-energy (several GeV) protons and heavy ions; and (c) Van Allen radiation 

belts contain electrons (up to ~10 MeV) and protons (up to 100 MeV) trapped in the geomagnetic field. 

The position of the damage source above poses a concern for satellites, especially a spacecraft that 

employs complex modern electronics. Studying the effects of radiation environment on LEO 

spacecraft is very important to mitigate and to protect of our spacecraft from serious damages. 

 

2. Variability of Solar Activity 

Figure 1 gives an overview of the solar data for 23rd solar cycle with period of 12 years and 6 months. 

The variability of solar activity is represented by the sunspot number (SSN), radio solar flux (F10.7), 

solar wind and solar energetic particles (galactic cosmic rays - GCRs). Data for SSN and F10.7 on daily 

basis collected from NOAA - Space Weather Prediction Center (SWPC) website are covered from 

May 1996 to November 2008, is presented in the first panel. The solar wind proton in the second panel 

(ACE/SWEPAM) consisting of density (B), temperature (C) and its speed (D) is presented due to it a 

stream of charged particles released from the Sun. In Figures 1E-F show the GCRs from ACE/CRIS 

with seven level energies for Carbon (C), Nitrogen (N) and Oxygen (O) elements, and the last panel 

shows the flux of solar energetic particles (SEPs) from ACE/SIS with a similar element as Figures 1B-

D, but we choose for energy level (MeV/nuc) of C_54.3-76.3, N_59.2-83.3 and O_63.8-89. The solar 

wind, cosmic rays and SEP data from 1 September 1997 to 30 November 2008 are collected from the 

Advanced Composition Explorer (ACE) satellites (http://www.srl.caltech.edu/ACE/). All the data 

collected on daily basis is processed into a 27-day average to monitor the trend during one solar cycle.  

 

 

Figure 1. The variability of solar energetic particles during the 23rd solar cycle from May 1996 to 

November 2008. A down arrow in the left of figure shows the geomagnetic storm on October 2003. 

The grey background shows the daily average and otherwise is a 27-day average.  
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As shown in Figure 1, the solar flux maximum was occurred around November 2001. However, 

one interesting event as indicated by down arrows is Superstorm October 2003. During this event, 

SSN reached more than 200 and the high-speed stream in the solar wind corresponds to the 

temperature and density, which indicate that how deep it will penetrate into the Earth’s atmosphere. 

This impacted density of solar wind at the 27-day average, which opposite to that of temperature. In 

the right panel of Figure 1 clarified that the galactic cosmic rays was opposite to that of SSN/F10.7. 

Although some noises recorded in Figure 1H, the trend of SEP was similar to that of GCR, which both 

for N are observed 25% lower than C and O. In general, the variability of solar energetic particles that 

generated space radiation is very crucial to the object in space (e.g., spacecraft). This radiation 

triggered by GCRs originated from the intergalactic medium, solar particle events (SPEs) which 

consisted of high fluxes of charged particles, primarily protons associated with solar flares (SFs) and 

coronal mass ejections (CMEs). One effect of this radiation on spacecraft is charging. Therefore, a 

specific previous of solar storm in October/November 2003 is presented once to document what has 

been missed to monitor space weather effects on a spacecraft. 

 

3. Space Weather Phenomena Impact on Spacecrafts 

One of the space weather phenomena is a geomagnetic storm. These phenomena can softly or harder 

damage electronics onboard spacecraft. An example case of space weather associated with 

geomagnetic storm variation during the Superstorm 2003 (known as the Halloween storm) is presented 

in Figure 2. The data on hourly basis are from 22 October to 7 November 2003, which covers the 

period of Superstorm from 29 to 31 October of the year. From top to bottom the panels, the solar 

activity is characterized by the South (Bz) component of interplanetary magnetic field (IMF Bz), the 

solar winds (velocity, density and temperature for protons) and SEPs (Ion, Proton and Electron).  

 

 
Figure 2. Variability of IMF Bz, solar wind and SEPs during a geomagnetic storm of October 2003. 
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As shown in the figure, the grey background highlighted are the beginning and ending of the 

occurrence of the Superstorm. The storm has two distinct episodes, preceded by a high solar activity 

on solar wind speed (see Figure 2b). The first storm episode peaked by a shock at ~06:00 UT on 29 

October with solar wind speed > 1,850 km/s followed by the first shock of IMF Bz minima at ~01:00 

UT with value ~-25 nT. The second storm episode was occurred at ~18:00 UT on 30 October with a 

speed > 1,710 km/s, followed by second IMF Bz minima at ~23:00 UT with value ~-30 nT. During this 

event, the solar wind density was recorded a low with small ripples and solar wind temperature was 

missing due to the tremendous of event. However, solar energetic particles were increased together, as 

indicated by an up arrow in the figure. A complete of explanation of geomagnetic storm on 

October/November 20013 of this work can be found in Suparta et al. [10] and Suparta [11]. In general, 

the high plasma densities and temperatures are associated with the interaction of the fast solar wind 

plasma and magnetic fields (ICMEs) with the slower upstream plasma [12]. More specifically on 

solar-energetic particles that included in, is presented in Figure 3.  

 

 

Figure 3. Solar energetic activity and PWV variation observed from 22 October to 7 November of 

2003. The vertical dashed line shows the time occurrence of flare activity (X17.2/4B and X10/2B), 

which shows the shock time wave of both flares, and down arrows shows the association between 

solar activity and the upper atmosphere parameters. The original figure was reproduced from the paper 

of Suparta [11]. 
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Since solar particles have unimpeded access to a spacecraft outside the magnetosphere, we 

present the variation of solar flare index (SFI), extreme ultraviolet (EUV), solar cosmic ray density 

(SCR) and solar energetic particle variations during the period of events. The peak of SFI for Southern 

Hemisphere region was measured maximum on 28 October 2003 associated with X17.2/4B flare. 

Solar full disk is a summation of Southern Hemisphere and Northern Hemisphere regions. The solar 

EUV ( = 10-120 nm) radiation affecting the upper ionosphere and is higher during the intense of 

solar flares. The percentage of cosmic ray (CR) density from ground-based neutron monitors at 

McMurdo and South Pole stations in Antarctica showed a jump abruptly and the higher fluxes of CR 

nuclei was modulated by a strong shock wave (SW). The last panel of Figure 3 shows the natural 

logarithmic of SEP for electrons and protons (obtained from NOAA/GOES), which showed a significa

nt enhancement of proton fluxes in both energy intervals associated with SW. In general, the 

sudden increase of proton peak is coincided with sudden storm commencement and X28 flare activity. 

This impulse when interact with Earth’s magnetic field produce changes in the near-Earth space 

environment. In addition, solar flares increased the radiation levels in the atmosphere due to the 

increase in trapped particles in the Van Allen belts. Finally, the particle radiation coming from space, 

degrade the capability of spacecraft systems, such as microelectronics systems which will be presented 

in the summary and discussion section.  

 

4. Summary and Discussion 

As a brief presented in Section 2 and Section 3, we can see that the sun emits energy that drives 

changes in the interplanetary environment. The changes in the vicinity of the Earth’s magnetosphere 

modulated by the sun during active and inactive phases of a solar cycle are accelerated by solar flares 

(SFs) and coronal mass ejections (CMEs). This solar particle event which consists of both protons and 

heavier ions with different composition will affect inclination and altitude of the orbits. In addition to 

the solar wind plasma, interplanetary space contains high-energy charged particle called GCRs. 

During a solar blasting event, solar energetic particles produce significant variation in the CR density. 

Specifically, spacecrafts are exposed from low to high latitudes, which including particle radiation, 

ultraviolet irradiation, neutral particles and space debris. Interaction of high-energy ionizing radiation 

with semiconductor materials can cause degradation, interference or malfunctions of spacecraft 

systems. Therefore, radiation damage to microelectronic circuits and devices will particularly address 

in this section. The basic mechanism of how the space radiation environment creates charged tracks in 

semiconductor electronics is briefly presented. 

An important effect occurred from interaction of semiconductor material and high-energy 

ionizing radiation is so-called the single event effect (SEE). SEE’s are caused by high-energy protons 

and cosmic rays (heavy ion). Heavy ions in the form of electron-hole pairs cause a circuit failure due 

to plasma track is collected in the sensitive circuit node. The collected at a junction or p-n contact is 

greater than the charge carrying in the threshold component. The most SEE errors are occurred in the 

SAA region due to protons are trapped in the Van Allen belts. Below are several types of SEE's and 

they can be classified into soft or hard errors [9, 13]. Soft errors are nondestructive to the device and 

normally interrupt the normal operations or halt. Hard errors may be physically destructive to the 

device with permanent functional effects. 

 Single-event upset (SEU) is a change of state or transient induced by an ionizing particle 

such as a cosmic ray or proton in a device. This may occur in digital, analog, and optical 

components or may have effects in surrounding circuit. Penetration of electrons with energies 

greater than 10 keV can accumulate charge inside the spacecraft resulting various effects such 

as SEU. 

 Single-event latch up (SEL) is a potentially destructive condition involving parasitic circuit 

elements to a single event. In traditional SEL, the device current may exceed device maximum 

specification and destroy the device if not current limited. 

 Single-event burnout (SEB) is highly localized burnout of the drain-source in power 

MOSFETs. SEB is a destructive condition. 
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 Single Event Transient (SET) – an error in term of a reset or rewriting of the device causes 

normal device behavior thereafter. 

 Single Hard Error (SHE) - an SEU which causes a permanent change to the operation of a 

device. An example is a stuck bit in a memory device. 

 Single Event Gate Rupture (SEGR) - a single ion induced condition in power MOSFETs 

which may result in the formation of a conducting path in the gate oxide. 

 Multiple Bit Upset (MBU) - an event induced by a single energetic particle such as a cosmic 

ray or proton that causes multiple upsets or transients during its path through a device or 

system. 

Figure 4 shows an example of how high-energy of solar radiation threats the microelectronics 

devices in a CMOS memory cell. In Figure 4a, ionization effects caused charged particles and lattice 

will be affected due to ones of the ion energy is too low [9]. The ionization effects are usually transient, 

creating glitches and soft errors. They change the arrangement of the atoms in the crystal lattice, 

increasing the number of recombination centers, depleting the minority carriers and affected 

semiconductor p-n junctions. One illustration of the SEU soft error in the common 6 transistor SRAM 

cell is presented in Figure 4b. In that configuration, T2 and T4 are PMOS, and T1 and T3 are NMOS, 

where T5 and T6 are the access point for reading and writing cell. When the external charged come in 

(e.g., GCR), the memory cell will in state ‘1’, T3 and T2 will be conducted (ON), and T1 and T4 will 

OFF. Consequently, potential at points Q and 𝑄̅ are equals Vcc and 0 (ground), respectively. If the ion 

beat deposit with enough charge into the channel beneath the gate oxide (poly-Si), the T1 will 

temporally switch ON and the potential at point Q would suddenly reduce and become close to zero. If 

T1 is ON long enough, consequently, low voltage occurs at the gate of T3 and turns it into OFF. This 

implies that soft effects will occur in T1, and then T2 and T4 will change their state leading to 

eventually a bit flip.  

As a conclusion, the mitigation of these soft errors in modern microelectronics due to space 

radiation has become important, not only space electronics but also in general commercial electronics. 

The radiation hazard during geomagnetic storms or substorms is also important to be taken into 

account in estimating accurately the impact of space weather because of hot plasma will be injected 

from the magnetotail into the nightside high-altitude equatorial regions that will affect the LEO-

Equatorial inclination. 

 

Figure 4. (a) Schematic view of a particle hit in a pMOS transistor and (b) a basic configuration of a 

6-transistor SRAM cell   
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