Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012018 doi:10.1088/1742-6596/538/1/012018

From probabilities to wave functions: A derivation of
the geometric formulation of quantum theory from

information geometry

Marcel Reginatto
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

E-mail: marcel.reginatto@ptb.de

Abstract.

It is shown that the geometry of quantum theory can be derived from geometrical structure
that may be considered more fundamental. The basic elements of this reconstruction of
quantum theory are the natural metric on the space of probabilities (information geometry), the
description of dynamics using a Hamiltonian formalism (symplectic geometry), and requirements
of consistency (K&hler geometry). The theory that results is standard quantum mechanics, but
in a geometrical formulation that includes also a particular case of a family of nonlinear gauge
transformations introduced by Doebner and Goldin. The analysis is carried out for the case of
discrete quantum mechanics. The work presented here relies heavily on, and extends, previous
work done in collaboration with M. J. W. Hall.

1. Introduction

It is now known that quantum mechanics has a rich geometrical structure which allows for a
geometric formulation of the theory. The geometric approach was introduced by Kibble [1] and
later further developed by a number of other authors. One successful strategy has been to start
from a known formulation of quantum mechanics and to identify geometrical features that can
be used for the reformulation of the theory. This paper inverts this procedure: the aim is to
derive the geometry of quantum theory from geometrical structure that may be considered more
fundamental, and to examine the assumptions that are needed to do this. The work presented
here relies heavily on, and extends, previous work of Reginatto and Hall [2, 3]. The basic
elements of this geometrical reconstruction of quantum theory are the natural metric on the
space of probabilities (information geometry), the description of dynamics using a Hamiltonian
formalism (symplectic geometry), and requirements of consistency (Kahler geometry). One may
associate a Hilbert space with the Kéhler space, which leads to the standard version of quantum
theory. The analysis is carried out for the case of discrete quantum mechanics; a similar approach
has been carried out previously for continuous systems [2].

2. Information geometry

Consider a system with a discrete configuration space. If the configuration of the system is
subject to uncertainty, the state of the system will be described by a probability P = (P!, ..., P")
where n is the number of states. The probability that the system is in state i is P?, where P"
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satisfies P! > 0 and 3, P' = 1. The space of probabilities can be visualized as points in the
simplex S,—1 = {P € R} : > P' =1}.
There is a natural line element in this space, given by

ds” = Gy dP' AP = 2= 6i; dP' P, (1)

where « is a constant. The value of o can not be determined a priori; it is usually set to %,
but for the purposes of this paper it will be convenient not to follow this convention. Instead,
a will be treated as a parameter. The line element of Eq. (1) defines a distance on the space
of probabilities. This distance seems to have been introduced into statistics by Bhattacharyya
[4, 5] as a way of providing a measure of divergence for multinomial probabilities [6]. Wootters
has shown that this distance can be motivated using arguments based on the concept of the
distinguishability of states and refers to this distance as the “statistical distance” [7].
The metric G;; that appears in Eq. (1) is known as the information metric,

(%

i = 5pi

dij- (2)
It has been shown by Cencov that the information metric is the only metric that is invariant
under a family of probabilistically natural mappings known as congruent embeddings by a Markov
mapping [8]. A simpler proof, which also makes use of these mappings, was given later by
Campbell [9]. It will be useful to give a brief description of these mappings because their
generalization (see below) play an important role in the derivation of the main result of this
paper.

I follow the presentation of Ref. [9]. A Markov mapping is a particular type of linear
transformation between a simplex Sy,—1 and a simplex S, (with m < n) which preserves the
probability; i.e., 3™ ; P* = 3% ; P’ = 1. For m = n, the mapping is just a permutation of the
components P!, but for m < n, the mapping relates spaces of different dimensions. A Markov
mapping may be constructed in the following way. Let A = {41, ..., A;,} be a partition of the
set {1,2,...,n} into disjoint sets. Associate a probability vector Q(4) = (¢a1, -+, qan) to each of
the A,, where the g, satisfy

Gy =0 if b ¢ A, qap > 0 if b€ A, > qw =1 (3)

The probability vector @)(4) is therefore concentrated on A,. Note that the m x n matrix Q
with elements g4, has the following properties: Each column has precisely one non-zero element
and each row sums to one.

Define mappings between f : S,,—1 — Sp—1 and g : S,,—1 — Sm—1 by

m
Pb = Z Paqab7
a=1

P o= > P ae{l,2,...,m} (4)
beA,

Following Cencov, the mapping f is known as a congruent embedding of S,,_; in S,_; by a
Markov mapping. The mapping g, which is also defined in terms of the partition A, has the
property that the composition g o f is the identity map on S,,_1.
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I now consider a simple example of a Markov mapping for the case where n =m + 1. Set

10 00 0
0 1 00 0
Q= .t (5)
0 0 10 0
0 0 0 k (1—k)
with 0 < k < 1. Then
P= (P!, ,P") = P= (P! . . P" Pty .= (P, . kP™ (1 —k)P™). (6)

A vector in the tangent space of the simplex transforms in a similar way,
V=WL V") V=W Vv Ut = (VL RV (1 - k)V™). (7)

To prove uniqueness of the information metric, Cencov [8] and Campbell [9] show that the
only metric that preserves the inner product < A, B > of two tangent vectors A, B under a
Markov mapping is precisely the information metric. It is straightforward to show that the
metric has this property. To see this for the simple example discussed above, simply compute

- il {AZ‘ BZ} el {AZ‘ BZ} N kA™EB™ (1 —k)A™(k—1)B™
P '

<AB> = ; :; Pi P (1—k)pPm

_ f:{A;?i}:<A,B>. (8)

i=1

A proof of uniqueness is, as one would expect, not straightforward. The monograph of Caticha
[10], which includes a useful review of information geometry for both the discrete and continuous
cases, provides a nice, accessible proof of uniqueness which follows the presentation of Campbell.

3. Dynamics and symplectic geometry

I now set the probabilities in motion. Assume that the time evolution of the P! is generated
by an action principle and write the equations of motion using a Hamiltonian formalism. To
do this, introduce additional coordinates S? which are canonically conjugate to the P and a
corresponding Poisson bracket for any two functions F'(P,S) and G(P,5),

OF 9G  OF 0G
theh= Z <8PZ' 25t 08 api) ‘

As is well known, the Poisson bracket can be rewritten geometrically as

9G/oP
8G/dS )

(9)

(F.G} = (OF /0P , OF/S) Q ( (10)

where 2 is the corresponding symplectic form, given in this case by

o= (" ). (11)

where 1 is the n X n unit matrix. We thus have a symplectic structure and a corresponding
symplectic geometry. The equations of motion for P and S° are given by P! = {Pi,H },
Si = {8 H} where H is the Hamiltonian that generates time translations.
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Notice that the 2n-dimensional phase space with coordinates P? and S* has a richer structure
than the n-dimensional space of probabilities P?; in particular, one may introduce the notion
of observables, which are functions O(P,S) of the coordinates, together with an algebra of
observables defined in terms of the Poisson brackets of these functions [11]. However, not
every function O(P,S) qualifies as an observable because observables are also generators of
infinitesimal transformations and these transformations must satisfy certain requirements. For
example, the infinitesimal canonical transformation generated by any observable O must preserve
the normalization and positivity of P. This implies

O(P,S+x)=0(P,S), 00/dS =0 if P'=0. (12)

Note that the first condition implies gauge invariance of the theory under S* — S¢ 4 y, where
X is a constant [11].

4. Kahler geometry
The 2n-dimensional phase space with coordinates P? and S is an extension of the n-dimensional
space of probabilities P’. It is natural to ask the following question: Is it possible to extend the
metric G;; in Eq. (2), which is only defined on the n-dimensional space of probabilities P, to
the full 2n-dimensional phase space of the P? and S*? This can be done, but certain conditions
which ensure the compatibility of the metric and symplectic structures have to be satisfied.
These conditions are equivalent to requiring that the space have a Ké&hler structure (see the
Appendix of Ref. [2] for a proof).

A Kéhler structure brings together metric, symplectic and complex structures in a harmonious
way. To define such a space, introduce a complex structure J% and impose the following
conditions [12],

Qab = gacJCb > (13)
Tgav Iy = Ged » (14)
ab‘]bc = _6ac . (15)

Eq. (13) is a compatibility equation between the symplectic structure €, and the metric gg,
Eq. (14) is the condition that the metric should be Hermitian, and Eq. (15) is the condition
that J¢9 should be a complex structure.

The metric over the n-dimensional space of probabilities is the information metric, Eq. (2).
Then, metric over the full space will be of the form

gab=<§T ﬁ) (16)

where G = diag(5%7), and E and F are n x n matrices that need to be determined.
A simple matrix calculation using the Kéhler conditions and the expression for Q,, Eq. (11),
leads to general forms for the metric g4, and the complex structure J%,

(G AT . [ A (1+AHGT! (17)
Gab = A (1 + AQ)G_l ’ b — -G _GAGfl .

where the n x n matrix A satisfies GAG~! = AT but is otherwise arbitrary.
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5. On the geometry of the space of probabilities in motion

At this point, it is useful to make some general remarks regarding the approach and the results
obtained so far. The starting point is a system with a finite number of states (i.e., a discrete
configuration space) and a probability P = (P!, ..., P") where n is the number of states. The
first step of the procedure is to introduce the information metric, the natural metric on the
space of probabilities. This leads to the most basic geometrical structure of the construction,
information geometry. The second step is to consider dynamics and to introduce an action
principle to derive equations of motion. This is done using a Hamiltonian formalism: introduce
coordinates S canonically conjugate to the P?, a Poisson bracket structure, and a Hamiltonian.
This leads to additional geometrical structure, a symplectic structure. The third step is to extend
the metric structure of information geometry, to define a geometry over the full space of the P*
and S*. This can not be done in an arbitrary way. Consistency between the metric tensor and
the symplectic form leads to a Kdhler geometry.

Notice that the construction is very general: It applies to any system with a finite number
of states that is described probabilistically and which admits equations of motion that can
be derived from an action principle. In particular, the construction does not require any
assumptions regarding classical or quantum physics.

The few assumptions that enter into the analysis lead to the beautiful result that the natural
geometry of the space of probabilities in motion is a Kdhler geometry.

6. Uniqueness of the Kahler metric via generalized Markov mappings

The Kéhler conditions impose strong restrictions on the form of the metric g, Eq. (17), but
that they do not determine the metric uniquely because it depends on a matrix A which is to
some extent arbitrary. Additional requirements are therefore needed to determine the form of
Yab-

As discussed before, Markov mappings play a crucial role in the proof of uniqueness of the
information metric. In this section, it will be shown that the form of A can be determined
by requiring invariance of the metric g, under a particular type of canonical transformation
which extends the notion of a Markov mapping to the phase space with coordinates P’ and S°.
The simplest way to introduce a generalization of a Markov mapping is to treat it as a point
transformation (i.e., a transformation of the P?) and to use the well known fact that a point
transformation can always be extended to a canonical transformation.

Consider first the simple case of Markov mappings between spaces of the same dimension; i.e.,
where n = m. In this case, the Markov mappings are just permutations of the components P*
and their extension to canonical transformations is trivial: carry out simultaneous permutations
of the P’ and S°. These transformations have two important properties: they are linear and
they do not mix the P? and the S°.

The case that is non-trivial is the case where n > m. Here there are some subtle issues
that need to be addressed, foremost that such canonical transformations will map spaces of
different dimensions. This, however, is not a fundamental difficulty because there is a well
developed theory of “nonclassical canonical transformations” which extends the concept of
canonical transformations to allow for mappings of phase spaces of different dimensions [13, 14].
Although the canonical transformation that I derive in this section may be formulated within
this formalism, a simpler approach is possible and therefore there will be no need to make use of
the full theory of “nonclassical canonical transformations.” The simpler approach followed here
consists of extending the dimensionality of the space in a trivial way and imposing constraints.

For the purpose of this paper, it will be sufficient to work out the generalization for the case
of the simple example of a Markov mapping that I discussed before, where the dimensionality
of the space of probabilities is increased by one; i.e., n = m + 1. More generals cases can be
derived by considering a series of successive transformations that are either permutations or
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which increase the dimensionality of the space by one at each step.

Consider then a system with states described by the coordinates P, 87, j = 1,..m, and a
Hamiltonian H(P7,S7) which describes the dynamics.

As a first step, increase the dimensionality of the space in a trivial way by adding coordinates
pmtl gm+l to the phase space. This increase in the dimensionality does not change the
Hamiltonian. Therefore, the time evolution of the system remains the same and the additional
coordinates P™+1 S+l are constants of the motion. Consider now a point transformation
relating old and new coordinates P*, P* which satisfies the following relations,

P = P
pm = ﬁm_i_pm—l—l’
Pl — (1 —k)P™ - kP™ x0. (18)

where i = 1,...,m — 1, and the symbol “~” is used to indicate a weak equality (i.e., a constraint
in the sense of an equality of numerical values, not of functions of the phase space coordinates).
Using the last two relations of Eqs. (18), it is straightforward to show that P and P! satisfy
the constraints

P" ~ kP™,
P~ (1-k)P™, (19)

which agree with Eq. (6). Therefore, the relations defined in Eqgs. (18) are equivalent to a
Markov mapping. Notice that these constraints are preserved because P *! is a constant of the
motion.

The second step is to extend this point transformation to a canonical transformation. In
analogy to the case discussed above in which n = m, I will look for a linear canonical
transformation which does not mix the P? and the S’. Notice that these two conditions lead to
a unique canonical transformation (up to additive constants which are unimportant). To define
the canonical transformation, introduce the generating function

m—1
K= {PiS'}+ (P 4 P™H) ™ 4 [(1— k) P — kP 7L (20)
=1

Derive the canonical transformation from the generating function in the standard way; i.e.
Pk = 90K /0S* and S* = OK/OP*. This leads to the following equations,

Pt = P, pPm=pm4pmtl P = (1—k)P™ — kP™,

SZ‘ _ S,Z" gm — k‘gm + (1 o k)Svm—f—l’ Sm—f—l _ Svm - Svm—I—l’ (21)
and

Pt = P, P"=kpPm4 Pt Pl = (1 - k)P™ — Pt

Svi _ Si’ Svm — 9™y (1 o k)Sm+1, Svm-i-l —gm _ ksm-i-l_ (22)

where i =1,...,m — 1.

I have increased the dimensionality of the phase space by two dimensions and I have two
constants of the motion, P™*! and S™*!. As shown in Appendix A, consistency requires both
Pt~ 0 and S™*! ~ 0, which leads to

P™ ~ kP™, ~ P™lx(1-kP™,
Smox~ 8™ Smtl ~ gm, (23)
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It is also shown in Appendix A that the time evolution is preserved; i.e., the dynamics in
the 2(n + 1)-dimensional phase space (with coordinates with tildes) reproduces precisely the
dynamics in the 2n-dimensional phase space (with coordinates without tildes).

Given the canonical transformation, Eq. (21), and its inverse, Eq. (22), one can examine the
restrictions imposed on the matrix A by the requirement of invariance of the metric g, under
this generalization of a Markov mapping. The calculation is summarized in Appendix B. The
result is that the matrix A must be proportional to the n X n unit matrix, A = A1, where A
is a constant. The line element depends on two parameteres only, o and A, and it takes the
remarkably simple form

2Pk

(6%
a2 =3 ﬁ(dp’“)2 + 24dP*ds* + —+ A%)(dS*%)?]. (24)
k

7. Complex coordinates and wave functions
Up to now, I have made use of real coordinates P?, S’. Kihler geometry, however, is best
expressed in terms of complex coordinates. I carry out a complex transformation that shows
that the metric of Eq. (24) describes in fact a flat Kahler space.

Set A = A1 in Eqs. (17) and consider first the particular case A = 0. The tensors that define
the Kahler structure take the form

0 1 G 0 " 0 Gt
Qab:<_1 0)’gab:<0 G1>a b:<_G 0 > (25)

Define now the Madelung transformation,
Y* = VPFexp(iS*¥/a), YF = vV PFexp(—iS*¥/a). (26)

A simple calculation shows that the tensors that define the Kahler geometry, expressed in terms
of ¥, ¥ take the standard form which is characteristic of flat-space [12],

_ 0 1ol _ 0 ol a ( —11 0
Q“b_<—m1 0 >’gab_<a1 0 >’Jb_< 0 2‘1>' @7

One may conclude that in this case (A = 0) there is a natural set of fundamental variables given
by ¥’ and ¥*. In terms of these variables, the tensors that define the Kihler geometry take
their simplest form. If the constant « is set equal to A, these fundamental variables are precisely
the wave functions of quantum mechanics. This is a remarkable result because it is based on
geometrical arguments only. The derivation does not use any assumptions from quantum theory.

Consider now the more general case A # 0. The tensors that define the Kahler structure
take the form

/0 1 /G Al « [ A1 (14 A%)G!
Qab—<_1 O>agab—<A1 (1+A2)Gl>a‘]b_<_G —A1l ) (28)

In this case, define the modified Madelung transformation
o = V Pk exp [z (ASk/a — 'yanPk)} ) o = V Pk exp [—i (ASk/a — 'ylnkaﬂ ,  (29)

where A = 1/(1 + A?) and v = —A/(1 4+ A?). Once more, the tensors that define the Kihler
geometry, expressed now in terms of ¢*, ¢¥, take the standard form which is characteristic of
flat-space,

0 iaA™11 0 aA™11 " —il1 0
Q“b_<—iaA11 0 )’gab_<aA11 0 >"]b_< 0 2‘1>' (30)
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This shows that the geometry of the Kéhler space is the same whether A = 0 or A # 0. In fact,
it is possible to map one case to the other using an A-dependent canonical transformation. It
is clear then that both cases lead to the same theory (provided one sets « = h when A = 0 or
aA™' = h when A # 0), and in the following sections I will set A = 0 and use the complex
coordinates (wave functions) ¢ and 1’

The transformation that takes you from the coordinates of Eq. (26) to the coordinates of Eq.
(29) is a particular case of a family of nonlinear gauge transformations introduced by Doebner
and Goldin [15] (compare to their Eq. (2.2)). As pointed out by Doebner and Goldin, the
theory that results from this particular family of nonlinear gauge transformations is physically
equivalent to standard quantum mechanics. Here we arrive at the same conclusion, but now on
the basis of the equivalence of the two cases A = 0 and A # 0 via a canonical transformation. One
may therefore view the present derivation of the geometric formulation of quantum mechanics
as providing a new route to this family of Doebner-Goldin nonlinear gauge transformations.

8. Group of unitary transformations and Hilbert space formulation

In the Hamiltonian formalism, any (smooth) function of the canonically conjugate variables
generates an infinitesimal transformation. The group associated with these generators is the
group of canonical transformations. The group of transformations of the theory developed here,
however, can not be the full group of canonical transformations: only a subset of such generators
is permissible because the infinitesimal transformations are subject to certain restrictions. In
this section, I show that the group of transformations of the theory is the group of unitary
transformations and that one may introduce a Hilbert space formulation of the theory. Both of
these results are needed to establish the equivalence of the geometric formulation derived here
to standard quantum mechanics.

To understand the role of the unitary group, one can argue as follows. Since the Kahler
structure includes a symplectic structure, the group of symplectic transformations, Sp(2n,R),
will play an important role in the theory. But the group of transformations of the theory can not
be the symplectic group due to the requirements that the transformations have to satisfy. The
first requirement is that they preserve the normalization of the probability, 3, P? = 3, ¢ = 1.
The second requirement is that the metric be form invariant under the transformations; i.e., that
the line element di?> = 2a Zj dipidy? of the Kihler space be preserved by the transformations.
Requiring normalization of the probability and metric invariance leads to the group of rotations
on the 2n-dimensional sphere, O(2n,R). Unitary transformations are the only symplectic
transformations which are also rotations; i.e., Sp(2n,R) N O(2n, R)= U(n) [16]. Therefore, we
are led to the group of unitary transformations. One can show that time evolution is described
by a one-parameter group of unitary transformations (see Appendix C for a proof).

One can now introduce a Hilbert space formulation. There is a standard construction that
associates a complex Hilbert space with any Kihler space. Given two complex vectors ¢' and
¢', define the Dirac product by [1]

Wiy = oS { () i) (2]

200 &=
3

{00 S (8

_ ZQIMOZ (31)

In this way one arrives at the Hilbert space formulation of quantum mechanics.
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9. Concluding remarks

The geometry of quantum theory can be derived from information geometry, the natural
geometry on the space of probabilities, using only a few assumptions. The derivation has a
number of interesting features:

e Doubling of the dimensionality of the space (i.e., {P'} — {P%S‘}) from dynamical
considerations,

e Complex structure from consistency between metric and symplectic structures,
e Wave functions as the natural complex coordinates of the Kéhler space,

e Representation in terms of canonical transformations of a particular case of a family of
Doebner-Goldin nonlinear gauge transformations,

e Time evolution described by a one-parameter group of unitary transformations,

e Hilbert space formulation expressed in terms of geometrical quantites associated with the
Kahler space.

The derivation presented here relies heavily on, and extends, a geometrical reconstruction of
quantum theory by Reginatto and Hall which takes information geometry as its starting point
[2, 3]. Mehrafarin [17] and Goyal [18, 19] have also developed reconstructions of quantum theory
using information-geometrical approaches. A detailed comparison to their approaches has not
been carried out yet; however, one of the main differences is in the handling of dynamics, which
plays a crucial role here. In particular, the use of an action principle to describe the dynamics
of probabilities leads in a natural way to geometrical structure that goes beyond information
geometry. A generalization of Markov mappings has proven to be very useful for deriving a
unique Kahler geometry; these types of transformations may be of interest for other classes of
problems where probabilities play an important role.

Finally, a few remarks concerning the limit & — 0 (i.e., the limit ~ — 0 in quantum
mechanics). In this case, neither the Madelung transformation, Eq. (26), nor the modified
Madelung transformation, Eq. (26), are well defined so I consider the description in terms of the
real coordinates P?, S%. Of the three tensors that describe the Kihler structure, Eq. (25), only
the symplectic structure €2,; remains well defined: both the metric g, and the complex structure
J9 become singular when o = 0. Therefore, in the limit @ — 0, the metric g4, and complex
structure J9 are no longer available and the Kahler structure is lost. The only mathematical
structure that remains is the symplectic structure, which can be used to define equations of
motion for the canonically conjugate variables P?, S* given an appropriate Hamiltonian. One
interesting consequence of taking the limit &« — 0 is that the argument in Appendix C is no
longer valid (because without a metric one can no longer require metric invariance). A more
careful analysis of the limit A — 0 will be presented in a future publication.
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Appendix A. Generalized Markov mappings: constants of the motion and
dynamics

To derive the canonical transformation that generalizes the Markov mapping of Eq. (6), the
dimensionality of the original phase space was increased by two in a trivial way. This led to
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two constants of the motion, P! and S™*1. P™+! was set to P! ~ 0, with corresponding
constraints for the P* of the form

%

pm kP™,
Pt~ (1 —k)P™. (A1)
These are precisely the conditions that are needed to get a generalization of the Markov
mapping of Eq. (6). When k = 1/2, P™ ~ P™*! which is expected because in this case there

should be invariance under the re-labeling m <+ m + 1. To fix the value of S™+1 notice that
S+l ~ ¢ leads to constraints for the S* of the form

S™ o~ 8™ (1- k),
STl 9™ ke (A.2)
Argue once more that there should be invariance under the re-labeling m <> m + 1 in the case
when k£ = 1/2. But this can only be satisfied if ¢ = 0. On can conclude therefore that the
constants of the motion must satisfy
Pl — (1 —k)P™ - EP™! %0,
gmtl — gm _ gmtl &, (A.3)
The corresponding constraints for the unprimed coordinates are of the form
P o~ kPT, P (1— B)PT
gm o~ gm Grtlagm (A)
I check now that the dynamics in the 2(n 4 1)-dimensional phase space (with coordinates

with tildes) reproduces precisely the dynamics in the original 2n-dimensional phase space (with
coordinates without tildes). Using Eqgs. (21-22), one can show that

ﬁi _ oH Pm OH =m+l OH

PIk —agmt P =ggm (k)
< OH ~m OH ~m+1 o0H
S = Tpr =“apn T Tapm (4.5)
These equations lead to
.. L1 OH . Lm = m+1 OH
957" * 5™
i 21 OH m ST m+1 B OH
st =S5 =~ 3pi Sm"=kS +(1-k)S =~ 3pm’ (A.6)

which are the correct equations of motion for the original space.

Appendix B. Invariance of the Kahler metric under generalized Markov mappings
The metric of the Kéhler space is given by

T
Jab = ( i (1 +22)G1 )7 (Bl)

where G = diag(5%7) and the n x n matrix A satisfies GAG™! = AT, For the calculations in
this Appendix it is convenient to introduce the matrix B with matrix elements given by

Bijk = \/ Pj/ Pk Ajp.- (B.2)
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It is straightforward to show that B is a symmetric matrix, Bj, = By;.

To restrict the form of B, it will be sufficient to consider the invariance of the metric
under the particular generalized Markov mapping which corresponds to the inverse canonical
transformation of Eq. (22). After taking into consideration the constraints, Eq. (23), the
generalized Markov mapping can be written in the form

P = (P, P™)— P=(P,p" P .= (P kP, (1-k)P™),
S = (8,8™) — §=(5,8m §mtl) = (5 8™, 5™, (B.3)
where i1 =1,...,m — 1.

As a first step, look at the contribution to the line element di? from the mixed terms dP*dS*.
In terms of the coordinates without tildes,

m—1 ;
. . Pt . Pm .
d? =3 {BiidPldSZ +\ H BimdP'dS™ + 1 FBmidedSZ} + B dP™dS™.  (B.4)
i=1

There is a corresponding expression for the coordinates with tildes, and with the help of Eq.
(B.3) it can be rewritten in terms of coordinates without tildes. This leads to

2 7 1 7 m
di? = g{BudeS q/kPmBlm—i—@/ - Pm Bigmy1) | dP'dS }
k;BPm ~ 3Pm
{,/ Bmlﬂ/ By dedS’}
+ | kBom \/ B (mt1) T B(m+1 (1 = k) Bong1y(mer) | dP™dS™.
(B.5)

Equate terms in Eqs. (B.4) and (B.5) proportional to the same dP%dS®, where a,b = 1,....,m
This leads to the four relations

By =

By,
Bim = \/732m+ k)Bi(m—i—l)v

Bmz’ = \/ 3B m+1

/ [( 1— -
Bnm = kBmm"’ m(m+1 B(m+1 _k)B(erl)(erl)' (B.6)

Since the matrix B is symmetric, B;,, = Bi, which leads to

Blm + 1/ Bitmi1) = VE3Bmi + /(1 — £)3B (s 1):- (B.7)

By symmetry, By, = Bi(m—l—l) at k = 1/2, but this relation can only be satisfied if Bim =

Bi(m—i—l) = 0, which in turn implies B;,, = B,,; = 0. Since B;,, and B,,; are independent of k, it
follows that they must always be zero. This shows that the off-diagonal elements of the matrix
B are zero.

11
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Now look at the contribution to the line element di? from terms proportional to dP*dP® and
dS*dS®. The terms proportional to dP*dP? give the two relations

Bii = By,
Brm = kBmm+(1_k)B(m+1)(m+1)’ (B8)

while the terms proportional to dS*dS® give the two relations

14+ B2 = 1+B,}

)

L4 Bl = k14 B2)+ (1 =k) (14 B ) - (B.9)
Combining Egs. (B.8) and (B.9) leads to

Bii = By,
Notice that this result is valid for arbitrary values of k. Since there is nothing special about the
particular labels m and (m + 1), all the diagonal elements of the matrices B and B must be
equal. Then

B]-me7

B
B Bl (i 1)x(m+1) (B.11)
where 1,,«, is the n X n unit matrix and B still has to be determined.

To carry out this last step, use the relations

B(P,S) = B(P',P™ S 8Ssm),
B(P,S) = B(P(P),5(5)) = B(P!,P™+ P! St kS™ + (1 —k)S™).  (B.12)

The functional form of B(P,S) must be the same as the functional form of B(P,S), and
these expressions must be both invariant under permutations and independent of k. The only
functional form that seems to satisfy all these conditions appears to be B(P,S) = B(3>; PY).
But 3, P! = 1, therefore one can conclude that B is a constant and the matrix

B =081 (B.13)
is a constant matrix proportional to the unit matrix. This in turn implies that
A=A1 (B.14)

where A is a constant.

Appendix C. Group of unitary transformations

The generators of infinitesimal transformations (for example, Hamiltonians that generate the
time evolution of the system) have to satisfy certain requirements; therefore, not every function
of the coordinates qualifies as a Hamiltonian. To determine the allowed functional form of
Hamiltonians, it is convenient to set A = 0 and work with the complex coordinates ¥*, ¥F
introduced in Section 7. In this Appendix, I follow the derivation presented in Ref. [3] and
show that Hamiltonians must be of the form H =37, M)? YF (up to an additive constant),
where My is a Hermitian matrix. Thus, time evolution is described by a one-parameter group
of unitary transformations.
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To show this, one needs to consider three requirements. The first requirement is that the
transformations preserve the normalization of the probability, >, P* = 3, 1)’ = 1. The second
requirement is that the metric be form invariant under those transformations; i.e., that the
transformations preserve the line element do? = 2« > didi)? of the Kihler space. Requiring
normalization of the probability and metric invariance leads to the group of rotations on the
2n-dimensional sphere. Such rotations are linear with respect to 1)/ and ¢7. For an infinitesimal
transformation, it follows that

OH = 0OH
¢] = ’Lw, (Cl)
are linear in v and 1, where H is the Hamiltonian that generates the motion. Then H must be
of the form

) + Z [ M " + N F + Njpp? o (C.2)

where E(t) is a arbitrary function of time, M is Hermitian, and N is symmetric.

The third and final requirement is to consider rotations on the 2n-dimensional sphere that
are compatible with the equations of motion. Conservation of probability requires that the
Hamiltonian be invariant (up to an additive constant) under S/ — S7 + x, since to first-order
1]

o—eZPﬂ_ezasJ H(P,S +¢)— H(P,S). (C.3)

This condition, when written in terms of complex coordinates, is equivalent to invariance of the
Hamiltonian under ¢» — 1e’X. Using the notation Q := ZNjk¢j1,Z)k, Eq. (C.2) leads to the
equality

[Qe%‘ + Qe_%x} =0 (C.4)

which must be valid for all y. Differentiating with respect to x gives the additional equality
9 [Qe2i>< - Qe*%ﬂ — 0. (C.5)

Combining these two expressions leads to ) = 0. Since this must hold for all v, it follows that
Nji =0, i.e., the Hamiltonian has the Hermitian form

H=E(t)+ Y Mj/y* (C.6)
7.k

as desired.
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