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Abstract. An Ermakov system consists of a pair of coupled non-linear differential equations
which share a joint constant of motion named Ermakov invariant. One of those equations,
non-linear, is frequently referred to as the Ermakov-Pinney equation; the other equation may
be thought of as describing a dynamical system: a harmonic oscillator with time-dependent
frequency. In this paper, we revise the Quantum Arnold Transformation, a unitary operator
mapping the solutions of the Schrödinger equation for time-dependent (even damped) harmonic
oscillators, described by the Generalized Caldirola-Kanai equation, into solutions for the free
particle. With this tool, we elucidate the existence of Ermakov-type invariants in classically
linear systems at the classical and quantum levels. We also provide more general Ermakov-type
systems and the corresponding invariants, together with a physical interpretation.

1. Introduction
Since 2011, the authors have participated in a series of publications in which the Quantum
Arnold Transformation (QAT) was presented [1], developed [2, 3] and applied [4, 5, 6] to several
purposes. In particular, in [3], an explicit relation with the Ermakov-Pinney equation and the
corresponding Ermakov system was provided. The Ermakov-Pinney equation is related to the
Ermakov invariant [7, 8, 9] and appears in many branches of physics, such as Cosmology [10],
BEC [11], etc. The Ermakov system appears in BEC [12, 13] and what is known as Kepler-
Ermakov systems [14].

The QAT is a unitary map that relates the Hilbert space of solutions of the time-dependent
Schrödinger equation for a Generalized Caldirola-Kanai oscillator (a quantum version of a
classical system whose equation of motion is a Linear Second-Order Differential Equation,
LSODE) into the corresponding Schrödinger equation for the free particle.

The feeling of the authors is that the QAT provides a framework in which many known
relations, in particular for the Ermakov System, are better understood and some new ones are
found. It is the purpose of this paper to deepen in the relation between the QAT and the
Ermakov system, and to present examples that may help the reader to get a better grasp of the
approach to the Ermakov system through the QAT. Also, new generalizations of the Ermakov
system are possible within the QAT framework in a quite easy way.

The paper is organized as follows: in Section 2 we describe the transformation due to Arnold
[15] and set some of the notation. The corresponding quantum version, the QAT, is revised
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in Section 3. We use the QAT in Section 4 to construct the quantum Arnold-Ermakov-Pinney
transformation, which maps solutions of the time-dependent Schrödinger equation for a LSODE-
system into solutions of the time-dependent Schrödinger equation for any other LSODE-system;
a generalization of the Ermakov-Pinney equation is also provided. Finally, Section 5 is devoted
to provide several examples in order to clarify the ideas previously exposed.

2. The Classical Arnold Transformation
The context of the classical Arnold transformation [15] is that of Lie point symmetries of ordinary
differential equations. A Lie point symmetry of an ordinary differential equation (ODE) is a
coordinate transformation that sends solutions into solutions. The problem of determining the
Lie point symmetries of an ODE is rather old, and S. Lie gave the main results at the end of
the nineteenth century [16]. One of these results was that a second-order differential equation
(SODE) y′′ = F (x, y, y′) has the maximal number of Lie point symmetries (sl(3,R)) if it can be
transformed into the free equation by a point transformation:

y′′ = F (x, y, y′)

x̃ = x̃(x, y)
ỹ = ỹ(x, y)

=⇒ ỹ′′ = 0 . (1)

This linearization is possible if the ODE is of the form:

y′′ = E3(x, y)(y′)3 + E2(x, y)(y′)2 + E1(x, y)y′ + E0(x, y) , (2)

with Ei(x, y) satisfying some integrability conditions (see, for instance, [16, 17, 18]).
There is a nice geometric interpretation of this condition in terms of projective geometry. The

non-linear SODE (2) is obtained by projection from the geodesic equations in a two-dimensional
Riemannian manifold. The coefficients Ei(x, y) are in one-to-one correspondence with Thomas
projective parameters Π, and the integrability conditions that they satisfy are the conditions for
the Riemann tensor to be zero (see [17, 18]).

V.I. Arnold named this process rectification or straightening of the trajectories, and studied
the case of linear SODE (LSODE), giving explicitly the point transformation for this case [15].
Specifically, given a general Linear Second-Order Differential Equation (LSODE):

ẍ+ ḟ ẋ+ ω2x = Λ , (3)

where f, ω and Λ are functions of t, the Classical Arnold Transformation (CAT) is a point
transformation that is a local (in time) diffeomorphism:

A : R× T → R× T
(x, t) 7→ (κ, τ)

:

{
τ = u1(t)

u2(t)
=
∫ t
t0

W (t′)
u2(t′)2

dt′

κ =
x−up(t)
u2(t)

, (4)

where T and T are, in general, open intervals containing t0 and 0, respectively, u1 and u2 are
independent solutions of the homogeneous LSODE satisfying the canonicity conditions:

u1(t0) = 0 = u′2(t0) , u′1(t0) = 1 = u2(t0) , (5)

up is a particular solution of the inhomogeneous LSODE satisfying up(t0) = u′p(t0) = 0, and

W (t) = u̇1u2 − u1u̇2 = e−f is the Wronskian of the two solutions. Here t0 is an arbitrary time,
conveniently chosen to be t0 = 0 (see [1] for details).

The CAT transforms the original LSODE (3) into that of the free particle, up to a factor:

ẍ+ ḟ ẋ+ ω2x = Λ
A−→ W

u32
κ̈ = 0 . (6)
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The presence of this factor implies that patches of trajectories of (3) are transformed into
patches of straight (free) trajectories. In fact, an arbitrary trajectory solution of (3) can be
written as x(t) = Au1(t) + Bu2(t) + up(t), and the CAT sends it to κ(τ) = Aτ + B. While t
varies in the interval T defined by two consecutive zeros of u2(t) (containing t0), τ varies in the

range of the map defined by u1(t)
u2(t)

. In the case in which u2(t) has one zero, T is (left- or right-)

unbounded, and, if it has no zeros, T is R.
Even though the CAT is a local (in time) diffeomorphism, it can be defined for an arbitrary

time t0. Thus different CATs can be defined for different times t0 and cover in this way a
complete trajectory of (3). We shall show with the example of the harmonic oscillator how this
can be done.

2.1. The example of the harmonic oscillator
For this case, and considering Λ = 0, the two solutions are:

u1(t) =
1

ω
sin(ωt) , u2(t) = cos(ωt) . (7)

The open interval T defined by two consecutive zeros of u2(t), and containing t0 = 0, is (− π
2ω ,

π
2ω ),

and the CAT A and its inverse A−1 are then written as:

A : κ = x
u2(t)

= x
cos(ωt) , τ = u1(t)

u2(t)
= 1

ω tan(ωt) , (8)

A−1 :
x = cos(arctan(ωτ))κ , t = 1

ω arctan(ωτ) .
= κ√

1+ω2τ2
(9)

In this case τ ∈ R. Pictorially, the CAT for the HO can be represented as in Figure 1,
where velocities have also been included in the graphic for clarity. Here A maps the solid
part of the helix (half a period of a harmonic oscillator trajectory) into the whole line (a free
particle trajectory). The horizontal plane represents the space of all possible initial conditions
at t = 0 = τ . Note that both trajectories are tangent when projected onto this plane, due to the
conditions (5). See [4] for more details in this case. For the CAT to map other patches of the
HO trajectories into the free particle trajectories, different branches of the arctan function in
the inverse CAT (9) should be used (and a different t0 6= 0 for the CAT). For each integer k, let
us take Tk = ((k − 1

2)πω , (k + 1
2)πω ) and tk = k πω . The solutions verifying conditions (5) at tk are

u
(k)
i (t) = (−1)kui(t) = ui(t− tk) , i = 1, 2. Define a pair of CAT and inverse CAT from R× Tk

into R2 of the form: A(k)(x, t) = ( x

u
(k)
2 (t)

,
u
(k)
1 (t)

u
(k)
2 (t)

) = (κ, τ) and A−1(k)(κ, τ) = (x, t), where the k-th

branch of the arctan function has been used in A−1(k). An unfolded version of the CAT, Ã, can

be built by joining all the patches A(k), defining an application that maps a complete trajectory

x(t) of the harmonic oscillator into a trajectory κ(τ) of the free particle. Ã is periodic on t with
period π

ω , although discontinuous.
Other simple examples where this construction can be done are the damped particle and the

damped harmonic oscillator, see [2] for details.

It should be stressed that the CAT can be used to find invariant expressions for the harmonic
oscillator performing the transformation A on invariant expressions for the free particle (the
reversed procedure can be realized using A−1). We call this simple strategy “importing”
conserved quantities from the free particle to the harmonic oscillator, a procedure that can
be employed for different pairs of systems.
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Figure 1. Depiction of the CAT for the harmonic oscillator (adapted from [4]).

3. The Quantum Arnold Transformation
An arbitrary LSODE system (3) can be derived from the Lagrangian (we take Λ = 0 for simplicity
but the whole formalism can be developed with Λ 6= 0, see [1]):

L =
1

2
mef

(
ẋ2 − ω2x2

)
, (10)

and from this the Hamiltonian

H =
p2

2m
e−f +

1

2
mω2x2ef (11)

is derived, which is known as the Generalized Caldirola-Kanai (GCK) Hamiltonian for a damped
oscillator (see [1] and references therein). The case in which ḟ = γ and ω are constants
corresponds to the original Caldirola-Kanai Hamiltonian for a damped harmonic oscillator
[19, 20], and whose corresponding Lagrangian was given for the first time by Bateman [21].
Canonical quantization of the GCK Hamiltonian leads to the time-dependent Schrödinger
equation:

i~
∂φ

∂t
= Ĥφ = − ~2

2m
e−f

∂2φ

∂x2
+

1

2
mω2x2efφ . (12)

The CAT A is a local (in time) diffeomorphism between the space of solutions of the LSODE
system (3) and the space of solutions of the free particle. It is possible to extend it to a unitary

transformation Â, the Quantum Arnold Transformation (QAT), between the Hilbert space of
solutions φ(x, t) of the time-dependent Schrödinger equation for the GCK oscillator (12) at time
t, Ht, into the Hilbert space of solutions ϕ(κ, τ) of the time-dependent Schrödinger equation for
the Galilean free particle

i~
∂ϕ

∂τ
= − ~2

2m

∂2ϕ

∂κ2
, (13)

at time τ , HGτ . The desired extension is given by:

Â : Ht −→ HGτ
φ(x, t) 7−→ ϕ(κ, τ) = Â (φ(x, t))

= A∗
(√

u2(t) e
− i

2
m
~

1
W (t)

u̇2(t)
u2(t)

x2
φ(x, t)

)
.

(14)
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Here A∗ is the pullback of the CAT A, acting on functions (i.e. A∗(f(x, t)) = f(A−1(κ, τ))).
The QAT can be diagrammatically represented as:

HGτ
Â←−−−− Ht

ÛG(τ)

x xÛ(t)

HG0 ≡ H −−−−→
1̂

H ≡ H0

(15)

where H0 ≡ HG0 ≡ H is the common Hilbert space of solutions of the Schrödinger equation for
both systems at t = τ = 0 (we take, for simplicity, t0 = 0, as before), U(t) is the unitary time-

evolution operator for the GCK oscillator and ÛG(τ) is the corresponding one for the Galilean
free particle. The map at the bottom of the diagram is the identity due to conditions (5);
otherwise a non-trivial unitary transformation appears (see [1]).

From the commutative diagram, it is clear that Â is unitary given the unitarity of the
evolution operators. However, it can also be checked explicitly that the scalar product of two
states in HGτ at a given time τ is the same than that of the transformed states by Â in Ht at
the corresponding time t:

〈ϕ1, ϕ2〉HGτ =

∫ +∞

−∞
dκϕ1(κ, τ)∗ϕ2(κ, τ)

=

∫ +∞

−∞

dx

u2(t)

(√
u2(t) e

i
2
m
~

1
W (t)

u̇2(t)
u2(t)

x2
φ1(x, t)

∗
)

×
(√

u2(t) e
− i

2
m
~

1
W (t)

u̇2(t)
u2(t)

x2
φ2(x, t)

)
=

∫ +∞

−∞
dxφ1(x, t)

∗φ2(x, t) = 〈φ1, φ2〉Ht ,

(16)

where τ , κ, dκ and the integration limits have been transformed according to the CAT.
The QAT inherits from the CAT the local character in time, in the sense that it is valid only

for t ∈ T and τ ∈ T , although it can be defined for an arbitrary initial time t0. To extend the
QAT beyond T , we can proceed as in the classical case for the harmonic oscillator, considering

the different branches of the inverse function of τ(t), defining an unfolded QAT, ˆ̃A.
It should be stressed that, if in the different branches of the unfolded CAT proper solutions

verifying (5) are not used, changes in signs of the solutions can appear, which result in changes
in phases in the different branches of the unfolded QAT. This phenomenon is related to the
Maslov correction (see for instance [22]). In fact, it can be checked that, for the case of the

harmonic oscillator previously considered, Â(k)(φ(x, t)) = eik
π
2 Â(φ((−1)kx, t)).

From the commutative diagram (15) and from (16) it is clear that the QAT is a unitary
operator, and this has interesting and far-reaching consequences. Mimicking the process of
“importing” that we mentioned for the CAT between the free particle and the harmonic oscillator
at the end of Subsection 2.1, the QAT can be used to find invariant expressions for operators
as well as symmetry generators from one system to the other, importing wave functions, scalar
product, computing the time evolution operator, etc. One might say that the quantum free
particle is somehow “linked” to any LSODE-type quantum system through the QAT. This is
just a consequence of the fact that all those classically linear systems share a common symmetry
group at the quantum level: the so called Schr̈odinger group [23].
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4. The Arnold-Ermakov-Pinney transformation
Having in mind the diagram (15), one might wonder what happens when two different LSODE-
systems are related by QATs with the free-particle system as a middleman, that is, when a QAT
and an inverse QAT are composed, as follows:

H(1)
t1

Â1−−−−→ HGτ
Â2←−−−− H(2)

t2

Û(1)(t1)

x ÛG(τ)

x xÛ(2)(t2)

H ≡ H(1)
0 −−−−→

1̂
HG0 ≡ H −−−−→

1̂
H ≡ H(2)

0

(17)

That was shown in [3]: for the underlying classical construction, let A1 and A2 denote the
CATs relating the LSODE-system 1 and LSODE-system 2 to the free particle, respectively, then
E = A−11 A2 relates LSODE-system 2 to LSODE-system 1. E can be written as:

E :R× T2 → R× T1
(x2, t2) 7→ (x1, t1) = E(x2, t2) .

(18)

The explicit form of the transformation can be easily computed by composing the two CATs,
resulting in:

x1 =
x2
b(t2)

W1(t1)dt1 =
W2(t2)

b(t2)2
dt2 , (19)

where b(t2) =
u
(2)
2 (t2)

u
(1)
2 (t1)

satisfies the non-linear SODE:

b̈+ ḟ2ḃ+ ω2
2b =

W 2
2

W 2
1

1

b3

[
ω2
1 + ḟ1

u̇
(1)
2

u
(1)
2

(1− b2W1

W2
)

]
, (20)

and where u
(j)
i refers to the i-th particular solution for system j; Wj , ḟj and ωj stand for the

Wronskian and the LSODE coefficients for system j; and the dot means derivation with respect
to the corresponding time variable.

Equation (20) constitutes a generalization of the well-known Ermakov-Pinney equation. That
equation, together with the LSODE of system 2, is a generalized Ermakov pair. Also, any
(quadratic) conserved quantity corresponding to the Schrödinger group of symmetries, which
is shared by the two LSODE-systems, constitutes a generalized Ermakov invariant. Below, we
consider specific examples in which the usual Ermakov invariant is constructed.

An important point needs to be made: equation (20) actually defines a generalized
Arnold transformation, to be named (classical) Arnold-Ermakov-Pinney transformation, which
transforms solutions of the LSODE 1 into solutions of the LSODE 2. However, it does not
describe any of the two LSODE-systems themselves. Therefore, the Lie point symmetries of
(20) need not to be those of the LSODEs in the general case.

The quantum version of the Arnold-Ermakov-Pinney transformation, Ê, can be obtained
computing the composition of a QAT and an inverse QAT with the diagram (17) in mind, to
give:

Ê : H(2)
t2
−→ H(1)

t1

φ(x2, t2) 7−→ ϕ(x1, t1) = Ê (φ(x2, t2))

= E∗
(√

b(t2) e
− i

2
m
~

1
W2(t2)

ḃ(t2)
b(t2)

x22φ(x2, t2)

)
.

(21)
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The Quantum Arnold-Ermakov-Pinney transformation (QAEPT) is a unitary map importing
solutions of a GCK Schrödinger equation from solutions of a different, auxiliary GCK
Schrödinger equation which, in particular, might be the one corresponding to a harmonic
oscillator, as in the next Section.

5. Examples
5.1. Ermakov System and interpretation of the Ermakov Invariant
Consider the particular case where LSODE-system 1 is a harmonic oscillator (ω1(t1) ≡ ω0 and
ḟ1 = 0), which can be described by the Hamiltonian

HHO =
p21
2m

+
1

2
mω2

0x
2
1 , (22)

and LSODE-system 2 is a time-dependent harmonic oscillator with frequency ω2(t2) ≡ ω(t) and
ḟ2 = 0, with Hamiltonian

H =
p2

2m
+

1

2
mω(t)2x2 . (23)

Then, expression (20) simplifies to:

b̈+ ω(t)2b =
ω2
0

b3
. (24)

That is just the Ermakov-Pinney (also known as Milne-Pinney) equation [7, 24, 25].
Obviously, for ω0 = 0 the Arnold-Ermakov-Pinney transformation reduces to the ordinary CAT,
i.e. E = A.

Now, note that LSODE 1 Hamiltonian, HHO, is conserved, and that it is so on both sides of
the transformation E, given by (see (19)):

x1 =
x

b
, dt1 =

1

b2
dt . (25)

Computing the momentum p1 = mẋ1 = mdx1
dt1

= m dt
dt1

d
dt(

x
b ) = m(ẋb− ḃx), we can write HHO

in variables corresponding to system 2:

HHO =
1

2m
(pb−mḃx)2 +

1

2
mω2

0(
x

b
)2 ≡ I . (26)

That is easily recognized as the usual Ermakov invariant I. Thus, we have found a way to
characterize it through the CAT (or, more precisely, the CAEPT): I corresponds to the conserved
quantity HHO imported from the simple harmonic oscillator, which is used as an auxiliary
system. Because the auxiliary system is arbitrary, I is conserved for any ω0, provided (24) is
satisfied.

The reader might wonder about the comparison of b (adimensional), satisfying (24) and
providing the invariant (26), and the function α satisfying the usual Ermakov-Pinney equation
α̈+ω(t)2α = 1

α3 , which has the dimensions of the square root of time (see e.g. [26]). The relation
of b and α is simply b =

√
ω0α. In Quantum Mechanics, α is sometimes interpreted physically

as the width of a wave packet, up to a factor
√

2m/~ [26]. b may also be interpreted as the
width of a wave packet for the quantum time-dependent harmonic oscillator over the natural
length

√
2mω0/~ of the harmonic oscillator chosen as LSODE-system 1.

Using the explicit form of the inverse of (21) Ê−1 in this case, it is straightforward to arrive
at solutions φ(x, t) of the Schrödinger equation of the time-dependent harmonic oscillator in
terms of solutions of the Schrödinger equation for the simple harmonic oscillator ϕ(x1, t1):

φ(x, t) =
1√
b
e
i
2
m
~
ḃ
b
x2ϕ
(x
b
,

∫
1

b2
dt
)
, (27)
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where b is any solution of (24). Although the explicit computations are left to the reader,
note that, if ϕ(x1, t1) is chosen to be, for instance, an eigenfunction of the quantum operator

corresponding to (22), ĤHO, then the transformed wavefunction φ(x, t) is an eigenfunction of

the quantum operator Î corresponding to the invariant (26) (the explicit form of such operators
is easily obtained from their classical counterpart by the canonical quantization prescription).

That shows that Î has discrete spectrum.
Moreover, Î belongs to the sl(2,R) subalgebra of the Schrödinger algebra of point variational

symmetries of the system described by (23) (specifically, the one generating the compact
subgroup). Even beyond that, the process can be repeated for any other operator representing
an invariant in the simple harmonic oscillator (LSODE 1), showing the usefulness of the QAEPT
to perform quick computations (see also Subsec. 5.2 for the case of creation and annihilation
operators).

In the case here considered, the transformation Ê−1 together with (25) turns out to be
very similar to the one used in BEC, known as scaling transformation, to transform the time-
dependent potential (oscillator traps with time-dependent frequencies) into a time-independent
harmonic oscillator potential [12, 13]. Also, in that case (i.e. for ḟ2 = 0, W2 = 1, ḟ1 = 0, W1 = 1)
equation (21) reduces to the transformation given by Hartley and Ray [27] (this was already given
by Lewis and Riesenfeld in [9]). However, the Quantum Arnold-Ermakov-Pinney transformation
allows to choose in a suitable way the auxiliary system from which the solutions may be imported.

The Ermakov-Pinney equation entails a kind of nonlinear superposition principle, in the sense
that its solutions can be written in terms of the solutions y1(t), y2(t) of the corresponding linear
equation (with ω0 = 0):

b(t)2 = c1y1(t)
2 + c2y2(t)

2 + 2c3y1(t)y2(t) , c1c2 − c23 = ω2
0 . (28)

The other way round, the general solution y(t) of the linear equation can be written in terms
of a particular solution ρ(t) of the Ermakov-Pinney equation (24) as:

y(t) = c1ρ(t) cos(ω0 θ(t) + c2) , (29)

where c1, c2 are arbitrary constants and θ(t) =
∫ t
ρ−2dt′. Note that this equation is just (25)

for t1 = θ(t), ρ = b, x = y(t) and x1 = y(t)/b(t) = c1 cos(ω0t1 + c2). As a result, the general
solution of (24) can be determined from a particular solution ρ(t) using (29) and (28). A similar
situation holds for more general versions of the Ermakov-Pinney equation.

The process followed to find the Ermakov system is fairly easy to reproduce for more involved
systems playing the role of LSODE-system 2, and the interpretation is exactly the same. For
instance, consider a damped harmonic oscillator with time-varying frequency and damping (now
we omit the time dependence) characterized by a GCK Hamiltonian:

H =
p2

2m
e−f +

1

2
mω2x2ef . (30)

As before, the auxiliary system is a simple harmonic oscillator. We arrive at a generalization of
the Ermakov-Pinney equation:

b̈+ ḟ ḃ+ ω2b =
e−2f

b3
ω2
0 . (31)

The AEP transformation is given by: x1 = x
b , dt1 = e−f

b2
dt, so that we can compute

p1 = mẋ1 = mdx1
dt1

= m dt
dt1

d
dt(

x
b ) = mef (ẋb − ḃx) = pb − mḃxef (in the last step we have
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taken into account that the canonical momentum for the GCK oscillator is p = mẋef ). We then
write HHO in GCK variables:

HHO =
1

2m
(pb−mḃxef )2 +

1

2
mω2

0(
x

b
)2 ≡ I , (32)

which is an invariant for the GCK oscillator. This way, we have “imported” an invariant from
an auxiliary system through the Arnold-Ermakov-Pinney transformation. Note that in [28] the
authors also arrived at the result I = HHO using canonical transformations to link both systems
(the reader may also note the resemblance of the canonical transformation there employed
and the Arnold-Ermakov-Pinney transformation). The explicit construction of solutions of the
Schrödinger equation proceeds as before and similar observations can be made.

5.2. Creation-Annihilation operators
The “importing” process discussed before can be repeated for any conserved quantity of the
harmonic oscillator when it is used as an auxiliary system. Such an strategy may be quite
relevant when going to the quantum theory. For instance, the classical version of the (conserved)
annihilation (or annihilation) operators of the simple harmonic oscillator:

a =

(√
mω0

2~
x1 +

i√
2~mω0

p1

)
eiω0t1 , (33)

can be used to find the corresponding conserved function for the GKC oscillator seen in the
previous example. Performing the same transformation, we easily arrive at:

a =

(√
mω0

2~
x

b
+

i√
2~mω0

(pb−mḃxef )

)
eiω0

∫ t
0
e−f
b2

dt . (34)

We have used that p = mẋef once more. A similar expression for a has been obtained recently
in [26].

The QAEPT works in a similar way and the quantum version of the creation and annihilation
operators are found straightforwardly:

âφ(x, t) = Ê−1â1Êφ(x, t) = Ê−1â1E
∗(√b e− i

2
m
~ e

f ḃ
b
x2φ(x, t)

)
=

=
1√
b
e+

i
2
m
~ e

f ḃ
b
x2E∗−1

((√mω0

2~
x1 +

√
~

2mω0

∂

∂x1

)
eiω0t1E∗

(√
b e−

i
2
m
~ e

f ḃ
b
x2φ(x, t)

))
=

=
1√
b
e+

i
2
m
~ e

f ḃ
b
x2
((√mω0

2~
x

b
+

√
~

2mω0
b
∂

∂x

)
eiω0

∫ t
0
e−f
b2

dt(√b e− i
2
m
~ e

f ḃ
b
x2φ(x, t)

))
=

=
(√mω0

2~
x

b
+

i√
2~mω0

(−i~b ∂
∂x
−mḃxef )

)
eiω0

∫ t
0
e−f
b2

dtφ(x, t) .

(35)

We would like to remark that there are many possible “importable” constructions for which

analytical expressions can be found, such as the displacement operator D̂(a) = eaâ
†−a∗â, the

radial squeezing operator Ŝ(ξ) = e
1
2
(ξ∗â2−ξ(â†)2), etc. The fundamental reason for the mere

existence of these constructions is again the fact that classically linear systems share the same
set of symmetries as the harmonic oscillator (and the free particle), which can be shown by the
QAT. Some of these constructions can still be possible in classically non-linear systems, such
as those presenting a potential of the form 1

x2
[28] (in our setup, that would amount to replace
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LSODE 2 by the non-linear equation with a 1
x3

term). However, some of the symmetries may

be lost in such systems with respect to the linear ones, so that linear â and â† may not exist as
first-order operators, for instance, although they are still present as pseudo-differential operators
[29].
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[2] Guerrero J, Aldaya V, López-Ruiz F F and Cosśıo F 2012 Int. J. Geom. Meth. Mod. Phys. 9 1260011
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