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Abstract. It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully
grasped the meaning of their own mathematical constructions. They invented magnificent, fan-
tastic and very important mathematical features of modern physics, but they only delivered half
of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices re-
present operators, which Pauli and Dirac discussed in length. But this is only part of the true
meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and
Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices.

An introduction to this alternative interpretation will be discussed. Some applications of this
view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave
solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model
of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric
meaning of quantum mechanics.

1. Aim of this paper

“The neglect of exterior algebra is the mathematical tragedy of this century. (...) meanwhile, we have
to bear with mathematicians who are exterior algebra-blind,” tells us Gian-Carlo Rota [1]. Conse-
quently mathematics teachers and their students at schools and universities are exterior algebra-blind,
too. Even today nobody tells them how to deal with exterior algebraic structures. It is the aim of this
paper, to change this sad truth a little bit.

The remedy Hestenes and other scientists doing physics and mathematics education research pro-
pose against exterior algebra-blindness is called Geometric Algebra. Thus this paper gives first and
foremost a short introduction to Geometric Algebra. But as the author is spelled by the aesthetical and
conceptual strength of Geometric Algebra, some more speculative thoughts about Geometric Algebra
will be discussed in the second part of this paper.

2. The space we all live in
Obviously, we live in three-dimensional space: We can go to the left or to the right (x direction), for-
wards or backwards (y direction), and upwards or downwards (z direction). There is no forth spatial
direction we can move into. When moving around or moving our arms we feel and experience just
three directions.

But there is a severe problem with the construction of our sensory system. Most of our perceptions
we use to characterize and interpret the world around us are visual perceptions. We see with our eyes.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Symmetries in Science X VI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012010 doi:10.1088/1742-6596/538/1/012010

But the light, which carries the information about our three-dimensional surroundings, is absorbed by
the retina, which is a two-dimensional, curved surface. Thus the three-dimensional objects outside us
are represented as two-dimensional images in our eyes. Neurons then conduct this two-dimensional in-
formation into our brain which tries to reconstruct the three-dimensional objects around us. But as
only information about a two-dimensional distorted picture reaches our brain, the visual model our
brain constructs might be incomplete, unsuited for some situations or even faulty. And if the visual
models our brain delivers are not correct, the mathematical models we build on these visual models
might be partly wrong too.

There are strong hints that the mathematical models of sighted persons are indeed deficient. As
knot theorist Alexei Sossinsky remarks, the most complicated knots were invented by blind mathe-
maticians [2]. And “almost all blind mathematicians are (or were) geometers. (...) A blind person’s
spatial intuition is primarily the result of tactile and operational experience. It is deeper — in the literal
as well as the metaphorical sense” [2].

Children are not able to interpret two-dimensional pictures in a way we do as grown-ups. They can
not distinguish properly between illuminated convex or concave objects [3]. They have to learn it. In a
similar way we all are not able to interpret rotations correctly. We have not learned it. Usually we all
suppose objects to be in the same topological state after a rotation of 2x. But this is wrong. An object
attached to its surroundings by some strings exhibits a rotation symmetry of 41 which we do not re-
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Figure 1. Visualization of the Dirac belt trick.

cognize due to our visual deficiencies. Thus such an object has a spin of '4. Dirac’s belt trick [4], [5],
[6], [7], [8] clearly demonstrates this fact (see figure 1). We therefore have to draw two important
conclusions:

e 471 symmetries are nothing exclusively quantum mechanical.

o 471 symmetries are an essential part of our everyday world (our space) we live in.

e We need an appropriate mathematical language to describe 47 symmetries.
This language is Clifford Algebra. When applied to didactical situations in physics or other sciences
Clifford Algebra C¢; of three-dimensional Euclidean space is called Geometric Algebra [9], and Clif-
ford Algebra C¢; ; of four-dimensional pseudo-Euclidean spacetime is called Spacetime Algebra [10],

[11].

3. Geometric algebra is simple

”Much of Clifford algebra is quite simple” [12] or even “simple-minded” (see page XIII at the
introduction of [7]). It is even so simple and easy to understand, that Geometric Algebra “can be ex-
plained to the first person you meet in the street” (page 820 of [13]). Its basic features are described in
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many introductory books like [14], [15], [16], [17], [18], [19], [20] from a more or less university level
perspective. But to my astonishment even university professors who should be competent with
modeling geometric situations mathematically confess that they were “finding it so difficult to under-
stand GA” (see page VII at the introduction of [17]). Therefore I decided to present the basic foun-
dations of Geometric Algebra in this paper in a way suitable for school lessons. I myself taught
Geometric Algebra and Spacetime Algebra at physics lessons of upper secondary level in school [21],
[22]. And the results of the examinations were indeed encouraging [23].

The first step at these lessons has been to introduce oriented line elements (vectors) and oriented
area elements (bivectors) with the aim to immediately hit the algebraic heart of Geometric Algebra:
anti-commutativity. A simple discussion of the geometrical situation directly reveals the central idea
of Geometric Algebra (see figure 2).

left area element
= —right area element

Figure 2. Visualization of the geometric product of two base vectors as base bivector.

If two different vectors are multiplied, we get an oriented area element. This multiplication is
called geometric product (or Clifford product if you like) and contains the complete geometric
information about the relation of the two vectors [11], [15]. Thus the product of two base vectors
results in a base bivector, which represents an oriented unit square. The orientation then of course
depends on the order of the multiplication. If we first make a step into the direction of the x-axis and
then a step into the direction of the y-axis (figure 2a), we will get a positive or counter-clockwise
orientation (which equals the direction of a traffic circle on the continent). If we first make a step into
the direction of the y-axis instead and then a step into the direction of the x-axis (figure 2b), we will
get a negative or clockwise orientation (which equals the direction of a ghost driver in a traffic circle).
This change of orientation is codified in the negative signs of equations (1).

05Oy = — Gy, Oy 6,06, =—0C,0y G,0x = — 040, (1
Together with the condition, that unit vectors square to one
o’=0,=0c,/=1 2)

these equations form the algebraic core of Geometric Algebra. This is indeed rather simple, and Parra
Serra concludes in his didactical analysis of Geometric Algebra: “The only rules to remember are that
different orthogonal generating units (vectors) anticommute and that their square is +1...”" [13].

When I read for the first time about these rules in a paper from Cambridge, a bizarre announcement
followed: “We have now reached the point which is liable to cause the greatest intellectual shock™ (see
page 1184 of [24]). And it was indeed a severe shock which influences my scientific work till today:
These rules define Pauli algebra. Therefore we are forced to conclude: Pauli matrices represent base
vectors of three-dimensional Euclidean space.

And with the help of the oriented unit volume element (or base trivector or pseudoscalar) |

I=oy0,0, = (csxcsycsz)2 =-1, 3)
which acts as an imaginary unit, the Pauli relations can be rediscovered in standard form:

ooy =10, oy0, =l oy c,0x=10oy. 4)

' ...or in spacetime — 1 for timelike vectors or 0 in the case of light rays, which will be discussed later.
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Every vector r can then be written as linear combination of the Pauli matrices oy, oy, and ©,, a fact
already noticed by Cartan (see page 43 of [25]):

r=xoxtyoytzo,. ®))

Following the idea to describe all “geometric objects as real linear combinations of the generating
units and their geometric products” (see page 823 of [13]) the most general mathematical object
possible in Pauli algebra can be written as multivector

M=k+xoxtyoy+zo,+ Ay 0x0,+ Ay, 6,6, + A, 6,0,+V 0,6,0, ©
M=k+VD+x+A, D)o+ (y+AxD)o,+(z+AgD o, .

The second version of multivector (6) is called paravector [26], because the real coefficients

k, X, v, z, Ay, Ay, A, V € R are grouped to form a complex-like vectorial structure.

Xy» Yzo

4. The double nature of Pauli matrices

Pauli invented Pauli matrices to model the strange behaviour of electrons in 1927 (page 608 of [27]).
He never considered them to represent base vectors. Pauli always interpreted his matrices as operators
(or as a substantial part of an operator) and used the sandwich product P =S p S™! (page 611 of
[27]) in his calculations.

Of course this is right, too. Pauli matrices possess a double nature: They can be interpreted as
1

operands (vectors, on which is acted on) as well as operators which act on vectors. As 6; = 6;  the
sandwich product of different Pauli matrices with a vector r results in:
I =04 Gy= XOyx—yOy—Z0C, @)
L=0yICy,=—XOyTyOy,—20, (8)
13=0,IC,=—XO0x—yOy,t20,. )

These are reflections: vector r; of equation (9) equals the original vector r reflected at the z-axis. If
we multiply a vector r from the left and from the right by a base vector, the vector will be reflected at
the axis which points in the direction of the base vector. Pauli matrices represent base reflection in
three-dimensional Euclidean space.

This can be generalized for arbitrary directions. If we multiply a vector r from the left and from the
right by a unit vector n, the vector r will be reflected at the axis which points in the direction of the
unit vector n:

Ief=NTIN with n2=(nxcx+ny0y+nzcz)2= 1. (10)

The two interpretations of figure 3 form the geometric core of Geometric Algebra.

base vectors of base reflections in
Pauli matrices < three-dimensional Pauli matrices < three-dimensional
Euclidean space Euclidean space

Figure 3. Central ideas of Geometric Algebra.

It is well known that two succeeding reflections always result in a rotation. Or the other way round:
every rotation can be split into two (or more even numbered) reflections (see pages 1137/1138 of [5]
and pages 45/46 of [25]). Therefore rotations can be modeled by two reflections:

. 2 2
It =MTIerM=MNnrnm with m =n"=1. (11)
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If we multiply a vector r from the left and from the right first by a unit vector n and then multiply
the result from the left and from the right by another unit vector m, the vector r will be rotated in the
plane spanned by the two unit vectors n and m through twice the angle between the two unit vectors n
and m (see page 111 of [9]).

This is extraordinary. Please notice the many exclamation marks Doran and Lasenby use when
discussing these points: “This is starting to look extremely simple!” (page 43 of [15]). And: “The rule
also works for any grade of multivector!” (page 44 of [15]). Modeling rotations in Geometric Algebra
is indeed a complete conceptual highlight and much easier than in other mathematical systems.

5. Historical background: a missed opportunity

Geometric Algebra goes back to the theory of extensions, first formulated by Grassmann in 1844. Un-
fortunately, Grassmann’s theory was written in an obscure mathematical language nearly nobody un-
derstood at this time. It seems that only two eminent mathematicians really noticed, what Grassmann
had written: Hamilton, the inventor of quaternion theory, and Charles Sanders Peirce.

Dyson describes the reason for this tremendous ignorance of nearly all mathematicians: “Grass-
mann was an obscure high-school teacher in Stettin, while Hamilton was the world-famous mathema-
tician whose official titles occupy six lines of print after his name (...). So it is regrettable, but not
surprising, that quaternions were hailed as a great discovery, while Grassmann had to wait 23 years
before his work received any recognition at all from professional mathematicians™ (see page 644 of
[28]). And Peirce, fully aware of the importance of Grassmann’s contribution, translated Grassmann’s
ideas into his own mathematical language [29], which again nearly nobody understood at this time —
except Clifford, who finally succeeded in writing down [30] all these ideas in a language com-
prehensible by his contemporaries.

In his short, but important paper Peirce clearly states that “in truth, Grassmann has got hold (though
he did not say so) of an eightfold algebra” [29], just the algebra of the multivector (6). So it was totally
clear in 1877 that the basic entities of Grassmann’s algebra are “three rectangular vectors ..., three
rectangular planes ..., one solid ..., unity” [29].

In his Josiah Willard Gibbs Lecture [28] Dyson identifies the delay in the reception of Grassmann’s
ideas as one of several missed opportunities in the history of mathematics. According to him the cen-
tral question should have been: “How can it happen that the properties of three-dimensional space are
represented equally well by two quite different and incompatible algebraic structures?” (page 644 of
[28]). Unfortunately the answer Wolfgang Pauli and P.A.M. Dirac gave to this question partly neg-
lected the geometrical meaning. They never fully grasped the meaning of their own mathematical con-
structions, and they only delivered half of the interpretations of their inventions. In his Oersted Medal
Lecture David Hestenes urgently points to this failure: “The most basic of these misconceptions is that
the Pauli matrices are intrinsically related to spin. On the contrary, I claim that their physical signifi-
cance is derived solely from their correspondence with orthogonal directions in space” (p. 115 of [9]).

This is especially sad in the case of the great Dirac, because it seems that he knew about these ideas
and renounced them due to aesthetical considerations. He writes: “In this way the physical world is put
into correspondence with the scheme of bi-quaternions, instead of with the scheme of quaternions.
Now the scheme of bi-quaternions is not of any special interest in mathematical theory” (page 261 of
[31]). This lack of special mathematical interest convinced Dirac to follow another route and construct
a very interesting, but also very complicated and sort of conformal connection of quaternions with
physical reality [31]. And he writes: “Also (bi-quaternions) have eight components, which is rather too
many for a simple scheme for describing quantities in space-time” (page 261 of [31]). Here Dirac
failed twice: Eight components are not too many but too few for a scheme for describing quantities in
four-dimensional spacetime with necessarily 2* = 16 geometric base elements. And eight components
are just the right number of components to describe three-dimensional space, as already Peirce has no-
ticed.

Even today the missed opportunity Dyson identified has an effect on the work of scientists. For
example field medalist Michael Atiyah writes: “The geometric significance of spinors is still very
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mysterious. Unlike differential forms, which are related to areas and volumes, spinors have no such
simple explanation. They appear out of some slick algebra, but the geometrical meaning is obscure”
(see pages 113/114 of [32]).

These words are astonishing, and we should compare them with the conclusion David Hestenes
published 17 years earlier: “Thus ... every spinor uniquely determines a rotation dilatation. Therein
lies the operational geometric significance of spinors. The spinors form a subalgebra of Geometric
Algebra. The algebra of spinors was discovered independent of the full Geometric Algebra by
Hamilton, who gave it the name quaternion algebra. Some readers may want to say, rather, that we
have here two isomorphic algebras, but there is no call for any such distinction. A quaternion is a
spinor. The identification of quaternions with spinors is fully justified not only because they have
equivalent algebraic properties, but more important, because they have the same geometric signi-
ficance” (see page 1022 of [33]).

An example of the ignorance with respect to such a picture of spinors can be found when solving
the vacuum Maxwell equation. Even before the re-formulation of Geometric Algebra by David
Hestenes in 1966 [34] it was known (but widely ignored) that the spinorial plane wave solution of the
Maxwell equations results in circular polarized electromagnetic waves (see page 14 of [35]). This is
shown in the following section.

6. Geometric Algebra calculus & plane electromagnetic waves
In three dimensions geometric calculus builds on the geometric derivative

V:Gxi‘f‘Gyi‘f‘Gzi. (12)
OX oy 0z

This operator acts on multivectors. In electrodynamics we consider especially the multivector which
represents the electromagnetic field strength. As usual the electric field E and the magnetic field B can
be combined with the help of an imaginary unit (see page 114 of [9], page 1025 of [33], and page 509
of [36]) into the “complex Faraday vector” F

F=E+IB=E+o,0,6,B. (13)

But this electromagnetic field strength F should not be looked upon with algebraic eyes only, as the
term “complex vector” totally disguises the geometric meaning behind electric and magnetic fields. In
Geometric Algebra the electric field strength E is considered as a vector while the magnetic field
strength is considered as a bivector I B. Thus the electromagnetic field strength F is always a sum of a
vector and an oriented area element.

These two basic ingredients (12) and (13) are all the ingredients needed to dramatically condense
the four Maxwell equations into one single Maxwell equation (see again [9], [33], [36])

[i+VjF=p—1 J or in empty space: (i+VjF=O. (14)
cot c cot

Instead of four rather unconnected algebraic equations we now possess one equation which ex-
presses all the relevant physical information geometrically as scalar part, vector part, bivector part and
trivector part. The great didactical advantage of this geometric interpretation becomes clear when we
substitute the purely oscillatory trial solution

F :fel((otsz) (15)

for a monochromatic plane wave (with frequency ® > 0 travelling parallel to the z-axis) into the
vacuum Maxwell equation (14) and solve it for f. The constant factor f must not be a scalar. According
to equation (13) f has again to be the sum of a vector and a bivector, which indicates the electric and
the magnetic fields of the origin at time t = 0.
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Inserting equation (15) into equation (14) results after some straightforward mathematical steps in
the following simple intermediate equation (see page 1026 of [33]):
F=0,F or E +oy0,6,B=0,E +0,0,B. (16)

The different terms of this equation can now be split into its geometrical constituents with the help
of the inner and the outer products. The inner product of two vectors a and b or of a bivector a and a
vector b is defined as:

a-b—%(abera) a-b—%(ab—ba). (17)

It reduces the geometrical grades of the constituents: While a and b are vectors, asb is a scalar (see
left equation of (17)). While a is a bivector and b is a vector, a « b is a vector (see right equation of
(17)). The outer product of two vectors a and b or of a bivector a and a vector b is defined as:

aAb=%(ab—ba) aAb=%(ab+ba). (18)

It increases the geometrical grades of the constituents: While a and b are vectors, a Ab is a bivector
(left equation of (18)). While a is a bivector and b is a vector, aA b is a trivector or pseudoscalar (right
equation of (18)). And please note the interesting variation of signs in equations (17) and (18). It really
depends on the geometrical grades of the factors whether a product is symmetric or antisymmetric!

The sum of inner and outer products now form the geometric product

ab=aesb+anb ab=ae.b+anb (19)

This is indeed strong stuff, and Sobczyk still today remembers the moment, when he first heard
about these products: “I remember my sense of amazement when he (David Hestenes) wrote down the
basic identity for the geometric multiplication of vectors ... Why hadn't I ever heard of this striking
product, and why hadn't I ever heard of a bivector or directed plane segment, since it was the natural
generalization of a vector. Twenty-five years later [ still find myself asking these same questions” (see
page 1291 of [37]).

Now we are able to evaluate equation (16):

E+oio0,0,B=0,«E+o,AE+o0,¢eB+o0,6,AB (20)

T 0 T T T 0

vector bivector scalar bivector  vector trivector

The scalar part of this equation
c,+E=0 (21)

tells us that the direction of propagation o, and the direction of the electric field vector E are
perpendicular. The trivector part of this equation

o0y AB=0 (22)

tells us that the conventional magnetic field vector B is parallel to the xy-plane. Therefore the ma-
gnetic bivector I B is perpendicular to this plane. The vector and bivector equations

E=os0,+B and 66,06, B=0,AE (23)
both allow us to eliminate the magnetic field because they both result in
c,E=00,0,B=1B (24)

and therefore
F=(1+c,)E=E(l-0,). (25)
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If the initial condition E = E; o, holds at z = 0 and t = 0, then the plane wave solution of the
Maxwell equation in empty space is

Fin= Eoox(1+0,) e @ ) =) (0, 0,0, [cos(ot—kz) + Isin(wt—kz)]  (26)

which is shown in figure 4 (see also figure 2 at page 510 of [36]).

b
GxOyOz B(t=T/4) ®)

0,0y, B(;zo)
chycz B(z=k/8)

0x0y0; Bz=14)

y E z=18)
¥ E(z=14)

Figure 4. Graphic representations of the plane wave solution of Maxwell’s
equation in empty space (a) at z= 0 and (b) at t = 0.

The plane wave solution given in standard textbooks showing linear polarized electromagnetic
waves is thus an artificial algebraic solution which neglects the geometric structure of the space we
live in. It can only be constructed by a superposition of left and right polarized electromagnetic waves
(see also page 2027 of [33]).

7. Four-dimensional spacetimes & special relativity
Obviously, we live in a three-dimensional spatial world. But we only lived there till the invention of
special relativity by Einstein in 1905. Since 1905 we live in a four-dimensional spacetime world. This
world can be modeled in Geometric Algebra by increasing the number of base vectors — and by
changing their quality.

Starting at the origin of a coordinate system light travels the distance x during the time interval ct
which can be expressed by the spacetime interval

+(ct)y-x*=0. (27

This is a disturbing equation! The theory of relativity claims that space and time can be treated
structurally in the same way which according to Minkowski calls for an “identical treatment of the
four coordinates x, y, z, t”” (page 83 of [38]). But space and time are not treated identically here. There
is a positive sign in front of the time interval square and a negative sign in front of the space interval

square in equation (27). Of course we cannot get rid of these different signs. But we can hide them. To
do this, we write equation (27) with the use of two base vectors:

+(cty) + (x )" =0. (28)

Now we have identical signs in front of space and time interval squares, because we define the
time-like base vector y; and the three space-like base vectors vy, vy, ¥, as

vo=1 Y = yy2 =y, =-1. (29)
Again different base vectors anti-commute:

YiYk =— Yk Vi with i#k and i,ke {txy,z}. (30)
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And we have now again “reached the point which is liable to cause the greatest intellectual shock”
(page 1184 of [24]): These rules define Dirac algebra. Therefore we are forced to conclude: Dirac
matrices represent base vectors of four-dimensional spacetime.

Every spacetime vector r can then be written as linear combination of the Dirac matrices ¥, Yx, Vys
and v,, a fact already noticed by Cartan (page 133 of [25]):

r=cty +xy%tyytzy,. (€29)

Hestenes does not hide his astonishment about the path the history of mathematics has taken here:
“The Dirac matrices are no more and no less than matrix representations of an orthonormal frame of
spacetime vectors and thereby they characterize spacetime geometry. But how can this be? Dirac never
said any such thing!” (page 694 of [10])

Dirac invented Dirac matrices to model the strange behaviour of relativistic electrons in 1928. He
never considered them to represent spacetime base vectors. Dirac and Pauli always interpreted their
matrices as operators (or as a substantial part of an operator). This is really surprising: clearly all the
mathematics was there, and Pauli and Dirac were masters of it. But instead of following the idea of
Cartan to use the spacetime vector (31), Pauli tried to model physics with the complete spacetime
multivector (see lemma 5 at page 113 of [39])

16
X= Z XAY A (with vy, every possible product of several Dirac matrices) (32)
A1

as the most general mathematical object possible in Dirac algebra. And of course again he used sand-
wich products like v,'= Sy, S~ (see equation 1 at page 110 of [39]) or YuXYu= ... (page 114 of
[39]) in his calculations. This makes sense, as Dirac matrices possess also a double nature: They can
be interpreted as operands as well as operators which act on operands.

The sandwich products of the Dirac matrices with a spacetime vector r are:

Th= YIV= CtYi—XYx—YVW—ZY, (33)
==Y IV =—CtNtX Y=YV~ 27, (34)
==Yy Yy =—Cty—X¥%tyy—2V, (35)
==Y Iy, =—Cty—XY—-yY¥tzy, 36)

These are spacetime reflections. In equation (33) the vector r is reflected at the time axis, and in the
other equations (34) to (36) the vector r is reflected at the spatial axis. Dirac matrices represent base
reflections in four-dimensional spacetime.

This can be generalized for arbitrary directions. If we multiply a vector r from the left and from the
right by a unit vector n, the vector r will be reflected at the axis which points in the direction of the
unit vector n:

Ief=NTN '=%nrn. (37

with n’ =1 ifn is a time-like unit vector (n "' =+ n) and n*>=—1 ifn is a space-like unit vector
(n"' =—n). The two interpretations of figure 5 form the geometric core of Spacetime Algebra.

base vectors of base reflections in
Dirac matrices <« four-dimensional Dirac matrices < four-dimensional
spacetime spacetime

Figure 5. Central ideas of Spacetime Algebra.
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With all that in mind, Lorentz transformations are “starting to look extremely simple” (page 43 of
[15]), because they are nothing else than spacetime rotations or two successive spacetime reflections.
Therefore they can be modeled with the following very easy to apply formula:

-1 . . .
ot =MTIeemM =ftmnrnm with m, n spacetime unit vectors. (38)

Some Geometric Algebra examples for Lorentz transformations, special relativistic length con-
tractions or time dilations, and other special relativistic effects which can be used for secondary school
or introductory university courses can be found in [19], [21], [22], [23], [40].

8. Algebraic and geometric relations between Pauli and Dirac matrices
Usually the three Pauli matrices are considered as (2 x 2) matrices (page 44 of [25]):

0 1 0 —i 1 0
o= Gy =| . o,= (39)
Lo = (o) =3

In contrast to that Dirac matrices are considered as (4 x 4) matrices (page 278 of [15]):

(1 0 (0 -o, (0 -0, (0 -o, o)
Yt 0 _1 YX GX 0 Yy Gy O ’YZ GZ O

Applying the direct product of Zehfuss and Kronecker [41], [42], [43], Dirac matrices can be com-
posed of Pauli matrices. They then have the signature (+, —, —, )

Y. =0,®1 Yx =— (0,0%) ® oy Yy =— (0,05 ® o, Y. =—(0,05) ® G, 41)

The main algebraic message is: Two (2 x 2) matrices directly multiplied result in one (4 x 4)
matrix. A Dirac matrix is algebraically composed of two Pauli matrices (or Pauli matrix products). Or
colloquially: There are two Pauli matrices inside one Dirac matrix.

But there is a deep geometric relationship between Pauli algebra and Dirac algebra which contrasts
this sort of superficial algebraic picture: The spatial base vectors of Pauli algebra have to be con-
structed not only by the spatial base vectors of Dirac algebra, but also by its time-like base vector, as
the base vectors of an observer in three-dimensional space depend on the time direction of this
observer in four-dimensional spacetime. This base-vector of time is relevant for the three base vectors
of space we construct.

This can be seen, if we compare the geometric derivative of three-dimensional space (12) with the
geometric derivative of four-dimensional spacetime

D_ a +Yx£+YYi+

—y = , = )
oot Max My e 42

Obviously the two geometric derivatives of a multivector are not equal, if we add the time direction
according to the successful procedure of equation (14):

0 0
—+V MzzOM but: —+V | M=0yM. (43)
cot cot

At the left equation of (43) the time derivatives have different grades. To adjust this, the geometric

derivative (also called Dirac operator) has to be post-multiplied by the time-like base vector y,. This
results in the balanced equation (44).

* Of course other systems of (4 x 4) matrices comply with Dirac algebra, too. For instance, Cartan proposed the
following matrices as spacetime base vectors (see page 133 in connection with page 82 of [25]) with signature
+++-): Ai=0,®0,, Ay=-0,80,, A3=0,®1, and As;=c(c,0,) ®1
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0 0 0 0 0 0 0 0

—+0oy —+to, —to, — | M=| —+%¥ — tvn— T — M (44)
cot OX oy 0z cot OX oy 0z

The relation between Pauli and Dirac matrices can be found now by comparing the base vectors in
front of the spatial derivatives:

Ox = Yx Yt Oy =Yy Yt o, =Y.Vt (45)

Geometry tells us, that there are not (colloquially spoken) two Pauli matrices inside one Dirac
matrix. There are two Dirac matrices inside every Pauli matrix instead! Of course, the Pauli matrices
of equation (45) are written as (4 x 4) matrices. Nevertheless, they totally follow the rules of Pauli
algebra’.

“Consequently, a vector in the Pauli algebra of space is a bivector in the Dirac algebra of space-
time” (page 1292 of [37] ). Whenever we move along a spatial line, we actually move along a
spacetime area element. And this fact is so important, that Sobczyk included it as special highlight in
his birthday address for David Hestenes [37].

9. A toy model of SU(3) symmetry

In a sandwich-like product of Geometric Algebra more or less the same factors have to be pre- and
post-multiplied. In this section products will be discussed which have different pre- and post-multi-
plication factors. As an example we try to translate the eight Gell-Mann matrices

010 0 —i 0 1 0 0 001

M=l1 00 M=l 0 0 M=10 -1 0 Ay = 00

000 0 0 0 0 0O 00
(46)

0 0 —i 000 00 0 10 0

As=10 0 0 M=10 0 1 M=10 0 —i Ag = 1 0

i 0 0 010 0 i 0 00 -2

of SU(3) symmetry into a toy model of Geometric Algebra. To mimic the multiplication of the first
Gell-Mann matrix A; by a complex column vector
0 1 0)(x+iA,, y+iA,,
M=11 0 0f|y+iA, |~ |x+iA, (47)
0 0 0)lz+iA, 0
we have to find a Geometric Algebra transformation of a multivector M which gets rid of the third
paravector component z + A, I. And of course the scalar part should disappear too, because it is not

part of the resulting column vector of equation (47). This can be achieved by adding the following
equations:

oxMo,=c, (k+VD+x+A, Do+ (y+tAxD oy, +(z+Ay])o,) o,
= (k+VI)owo,+(x+A,Do,+(y+AxD ox—(z+ Ayl) oxo,0,
oyMoy=—(k+VI) oo, +(x+A,Ioc,+(y+AxD o+ (z+ Ayl) oioy0, 49)

(48)

* In five-dimensional spacetimes or spacetimevelocities this works in a similar way. Then Pauli matrices (base
vectors of three-dimensional space) can be identified as products of three Dirac matrices (base vectors of five-
dimensional spacetimes or spacetimevelocities, see equations 24-26 of [44]) as  G,” = YxY(Yv» Oy = YyYiYvs
G, =Y. MYy, if together with the Dirac matrices (41) the time-like Dirac matrix y, = o, ® 1 (see equation 45
at page 497 of [45]) is used as additional base vector for the direction of the fifth coordinate.
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This can be done for the other Gell-Mann matrices in a similar way. The results are in three-dimen-
sional space (see following equations on the left side) and according to transformation (45) in four-
dimensional spacetime (equations on the right side):

1 1

7\'I(ND = E (Gx M Oy + Oy M GX) XI(M) == E i: (yx M Yy + Yy M YX) Yt (50)
1 1

(M) = E(GZMI—IMGZ) kz(M):—Evt(szvt—vtMvz)% (51)
1 1

7\'3(M) = E (Gx M Ox — cSy M Gy) 7\'3(1\/[) == E Yt (Yx M Yx - Yy M Yy) Yt (52)
1 1

7“4(M) = E (GZ M Ox 1 Oy M GZ) 7\‘4(1\/[) == E Yt (yz M Yx + Yx M YZ) Yt (53)
1 1

As(M) = > (I1Moy,-oc,M1) As(M) = - ol My, —yyMy) (54)
1 1

(M) = > (oyMo,+ 0, Moy A(M) =— o (y My, +v:Myy) 1 (55)
1 1

(M) = > (cxM1-1Moy) (M) = - PRé (xMyi= 1My, v (56)

1 1
xg(M):—3(cxMcx+cyMcy—2cchz) xg(M)=—mvt(yxMyﬁvvay—szMvz)% (57)

2.3

These results are nearly identical to results which can be found in the literature. Only the transfor-
mations for the diagonal Gell-Mann matrices As(M) and Ag(M) slightly differ from these results, see
table 1 at page 168 of [46] for the equations given above on the left side and equation 26 a-h at page 7
of [47] for the equations on the right side.

10. Preliminary Thoughts on the Geometric Meaning of Quantum Mechanics

The introduction to Geometric Algebra given in the preceding sections follows ideas published by
many other authors. All these things described in these sections are not new, but already known since
decades — or even longer.

The main focus of my paper might be a little bit different compared to standard presentations,
because for didactical reasons I didn’t emphasize coordinate-free methods in the way other authors
would expect [48]. But the mathematical and physical interpretations are surely identical.

This changes when we reach quantum mechanics. Very probably no human being till now has
actually understood quantum mechanics in a way we understand physical laws from other domains. “I
don’t understand it. Nobody does,” Feynman tells about quantum mechanics (page 9 of [49]).

Therefore the interpretation of equations describing quantum mechanical situations is unclear and
controversial. But these equations obviously describe experiments to a very high accuracy. The
algebra of quantum mechanics is understood. It’s the geometry of quantum mechanics which accounts
for nearly all open questions. For this reason a mathematical language which uniquely combines alge-
bra and geometry might be suited to shed more light on the meaning of quantum mechanics.

Then the basic question is: What is the geometry of the world we live in? We can describe this
geometry in the non-relativistic case by the 16 basic elements of Pauli algebra: One base scalar which
equals the (2 x 2) unit matrix, three base vectors oy, 6y, G,, given in equation (39), three base bivectors
or oriented unit area elements ¢, Gy, 6,6, 6,6, and one base trivector or oriented unit volume element
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040y 0,. But then we are stuck: There are two possibilities for an oriented volume element in nature. In
the preceding sections we always decided to take I = 6,0, G, as oriented volume element. But does
nature really decides for a positive sign if all base vectors are multiplied? This positive sign is nothing
else than the consequence of an arbitrary decision we as human beings make. But there is another
possibility: It might as well be that nature decides for a negatively oriented unit volume element —1.

Or in other words: Do we live in a left-handed or a right-handed coordinate system designed by
nature? Obviously we do not know. And the more interesting question is: What will happen, if even
nature does not know?

A possible answer to this question could be, that at every measurement there will be a probability
p(1), that the sign is positive. And there will be a probability p(—1) =1 — p(1), that the sign is nega-
tive. The consequences are clear: Whenever we measure a physical entity U which should distinguish
between the different possible signs of the oriented volume element (for example spin, magnetic
moment) we will get a statistical result which represents the mean value of U:

(U) =D pD + () p(1) (58)

Therefore the hypothesis is: It is not the spin of the electron, which is uncertain in quantum
mechanics, but the orientation or handedness of the space we live in.

As said, the algebra of quantum mechanics is understood and is completely available for all of us.
For instance you can find the algebra of equation (58) in Jordan’s book (page 73 of [50]), where this
equation is the starting point for his discussion of quantum mechanics. Jordan develops an
interpretation of quantum mechanics, in which “all quantities (are) made from spin” (chapter 10 of
[58]). We should try to follow his mathematical route, which really offers an “easy way to look rather
deeply into quantum mechanics” (pager VIII of [58]). But at the same time we should also try to
change the interpretative frame of Jordan’s presentation. Quantum mechanical quantities are made
from geometry and might be a consequence of uncertainty in the handedness of the space”.

11. Final remarks: we should teach Geometric Algebra
The following two points, David Hestenes again and again emphasized (see pages 120/121 of [9]):

e Geometric Algebra provides a unified language for the whole of physics that is conceptually and
computationally superior to alternative mathematical systems in every application domain,

e Reforming the mathematical language of physics is the single most essential step toward
simplifying physics education at all levels from high school to graduate school,

should have become clear by this paper. We therefore should not hesitate to promote and enlarge the
knowledge about Geometric Algebra. This surely is no complicated task, because Seneca is still right
today: ”Non quia difficilia sunt, non audemus, sed quia non audemus, difficilia sunt” [51] — It is not
because Geometric Algebra is difficult that we do not dare, but because we do not dare, Geometric
algebra is difficult.

* Perhaps this is not the right place to admit that I have a severe problem with general relativity: It delivers far
too much solutions. In our eyes today, most solutions of Einstein’s field equation seem to be irrelevant to phy-
sics, and especially solutions with closed time-like curves are considered as suspicious. Therefore one of three
alternatives should be correct: 1. Einstein’s field equation is wrong. The correct field equations should only
give us solutions which describe situations of physical reality. 2. Einstein’s field equation is incomplete. There
should be an additional equation which tells us whether a solution of Einstein’s field equation describes a situ-
ation possible in physical reality or not. 3. Einstein’s field equation is correct and all solutions of the field
equation describe situations possible in physics. Then solutions with closed time-like curves are just solutions
which describe quantum mechanical phenomena. An elementary particle following a time-like curve has a
probability p(1), that its coordinate system is left-handed. And there will be a probability p(—1) = 1 —p(1), that
its coordinate system is right-handed, if the timelike curve changes the orientation of space within the elemen-
tary particles time travel like the orientation of an ant moving along a Moebius strip. This would explain quan-
tum mechanics as a general relativistic effect according to equation (58).
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