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Abstract. The symmetries of the equations of motion of a classical system are characterized
in terms of vector field subalgebras of the whole diffeomorphism algebra of the solution manifold
(the space of initial constants endowed with a symplectic structure). Among them, naturally
arises the subalgebra of Hamiltonian (contact) vector fields corresponding to (jet-prolongued)
point symmetries, those not corresponding to point symmetries and the remaining symmetries
being associated with non-Hamiltonian (hence non-symplectic) non-strict contact symmetries.

1. Introduction
In this work we aim at finding symmetries of a general (non-linear) system from the
diffeomorphisms of its solution manifold, the manifold of the constants of motion, endowed
with a symplectic structure. The interest in finding (basic) symmetries of a system is twofold:
classically, the symmetries allow for the reduction of order of the equations of motion (EoM),
and even for its complete solution when enough symmetries are known, and at the quantum level
symmetries allow for the possibility of applying a non-canonical, group-theoretical quantization
method like that of [1].

In 1978 V.I. Arnold [2] introduced a transformation that maps an arbitrary Linear Second
Order Ordinary Differential Equation (LSODE) into that of the one-dimensional free particle.
This was an explicit realization of a particular case of the transformations introduced by S. Lie,
who proved that certain systems given by a non-linear SODE whose EoM are up to cubic in the
derivatives can be mapped to the free particle [3].

One of the most important properties of the Arnold transformation (also shared by the more
general Lie transformations) is that, being a local diffeomorphism, it maps point symmetries of
the EoM (or Lagrangian) of the one-dimensional free particle into point symmetries of the EoM
(or Lagrangian) of the LSODE system, resulting in the surprising fact that they have the same
point symmetries.

This construction is not easily generalizable to more complex systems not even to higher
dimensions (where the Arnold transformation does not exist even in the case of LSODE systems
unless the system is isotropic). However, inspired by the Arnold transformation, we shall try to

Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012009 doi:10.1088/1742-6596/538/1/012009

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



find symmetries of general non-linear systems by importing them from those of a simpler system
like the free particle. The rationale under the symmetry tour of the Arnold transformation is
that the LSODE system has the same solution manifold as the free particle. Thus, we can skip
the free-particle step, and import directly the symmetries from the solution manifold. These
symmetries will be a suitable subset of the diffeomorphisms of the solution manifold (depending
on the structure that we wish to preserve).

The passage to the solution manifold is accomplished by a transformation where the new
coordinates and momenta are constants of motion. We shall denote a transformation of this
kind a Hamilton-Jacobi (HJ) transformation, since, when the new coordinates and momenta
are chosen to be canonical, it is generated by Hamilton’s principal function S satisfying the
Hamilton-Jacobi equation (see below).

It should be stressed that a HJ transformation provides the general solution to the equations of
motion, since it expresses the coordinates and momenta in terms of some (integration) constants
and time.

To map the symmetries from the solution manifold to the original system, the Jacobian of
this transformation is required. This is the main obstacle to accomplish our task, since for an
arbitrary non-linear system the HJ transformation is not available in closed form. However,
for the basic symmetries, a power series expansion in terms of the adjoint of the vector field
associated with the Hamiltonian is available (see Sec. 5.6).

Note that the existence of the HJ transformation is assured by the Straightening theorem,
the first step in the induction proof of Frobenius Theorem (see, for instance, [4]). This result
states that any vector field can be written, with a suitable choice of local coordinates, as the
partial derivative with respect to the first coordinate ( ∂

∂τ in our case). Applying this to the
Cartan formulation of Mechanics, the quotient of the contact manifold by the distribution
generated by the vector field associated with Hamilton’s EoM leads to a symplectic manifold
parametrized by the initial constants (constants of the motion). By an ulterior use of Darboux
theorem, a suitable family of constants can be found which are canonical coordinates, thus
completing the HJ transformation. This provides an alternative to solving the Hamilton-Jacobi
equation for Hamilton’s principal function S, which is a type-2 generating function for a canonical
transformation where the new coordinates and momenta are constants.

The main purpose of lifting symmetries from the solution manifold is that it provides a simple
way of computing all contact symmetries, and these are necessary and sufficient to generate the
solution manifold (i.e. expand the tangent space at each point). This is required, for instance,
to quantize properly the system. It should be stressed that point symmetries do not provide,
except in simple cases like linear systems, enough symmetries to generate the solution manifold
(see Sec. 6.3).

Working with contact symmetries release us from the requirement of fixing a given Lagrangian
(and considering just variational symmetries of this concrete Lagrangian), since it accounts for
all symmetries of all Lagrangian providing the same EoM. Of course, to define a given system,
we shall use a particular Lagrangian, but we shall not focus on this Lagrangian and will consider
variational and non-variational symmetries of it.

In this paper we shall not restrict ourselves to symmetries generated by jet-prolonged vector
fields on the configuration space, but we shall consider in general vector fields on the phase space.
We shall not consider other kinds of “exotic” symmetries, such as non-local symmetries (see [5]).
We shall restrict ourselves to dynamical systems with EoM given by the Euler-Lagrange (EL)
equations derived from a (regular) Lagrangian.

The usual notion of symmetry for a dynamical system is that of transforming solutions of the
EoM into solutions. More precisely, if M denotes the m-dimensional configuration space, then
Φ : R×M → R×M is a symmetry if given a curve γ : I ⊂ R→ U ⊂ M solution of the EoM,
Φ(t, γ(t)) = (t̃, γ̃(t̃)) defines a curve γ̃ : Ĩ ⊂ R→ Ũ ⊂M which is also a solution of the EoM.
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The paper is organized as follows. In Section 2 the point symmetries of the EoM are
characterized. In Section 3 variational point symmetries are addressed. Generalized symmetries,
in particular contact symmetries are discussed in Section 4. In Section 5 symmetries are lifted
from the solution manifold. Some examples are given in Section 6 and finally in Section 7 some
outlook is provided.

2. Point Symmetries of the equations of motion
The most elementary notion of symmetry is that which transforms just the variables1 (t, q).
The subsequent transformation on the derivatives q′, q′′, etc. is the one derived from the
transformation of (t, q) (i.e. the derivatives are not considered as independent quantities). These
symmetries are usually denoted as point or geometrical. When the transformation Φ depends
smoothly on some parameter ε, it can be expanded around the identity up to first order:

t̃ = t+ ε ξ(t, q) +O(ε2) , q̃i = qi + ε ηi(t, q) +O(ε2) . (1)

Deriving the previous equation with respect to ε at ε = 0 we obtain the coefficients of the
infinitesimal generator of the transformation:

X = ξ(t, q)
∂

∂t
+ ηi(t, q)

∂

∂qi
. (2)

Infinitesimal generators of symmetries are usually denoted Lie symmetries, since the Lie
bracket of two of them is also an infinitesimal generator of a symmetry (thus closing a Lie
algebra).

2.1. Characterization of Lie symmetries
If the EoM are of the form Fi(t, q, q

′, q′′, . . . , q(n)) = 0, then the infinitesimal generator X of the
symmetry verifies:

X [n](Fi) = 0 , (3)

on solutions q(t) of the equations of motion, where X [n] is the n-th jet prolongation of X, given
by [6]:

X [n] = X +X1
i

∂

∂q′i
+X2

i

∂

∂q′′i
+ · · ·Xn

i

∂

∂q
(n)
i

, (4)

with

X1
i =

dηi
dt
− q′i

dξ

dt
, Xk

i =
dXk−1

i

dt
− q(k)

i

dξ

dt
=
dk

dtk
(ηi − q′iξ) + q

(k+1)
i ξ . (5)

2.2. Characterization in terms of the total derivative vector field

If the EoM can be written as q
(n)
i = fi(t, q, q

′, . . . , q(n−1)), then an alternative description can
be given in terms of the total derivative (along trajectories) vector field, defined as:

Dt =
∂

∂t
+ q′i

∂

∂qi
+ q′′i

∂

∂q′i
+ · · ·+ fi

∂

∂q
(n−1)
i

. (6)

Then
X [n](F ) = 0 ⇔ X [n−1]fi = Xn

i ⇔ [X [n−1], Dt] = −(Dtξ)Dt . (7)

on solutions q(t) of the EoM.

1 To avoid cluttering the notation, we shall denote the vector (q1, q2, . . . , qm) by q.
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2.3. First Integrals
A function I(t, q, q′, . . . , q(n−1)) satisfying DtI = 0 is named a first integral of the EoM. First
integrals are quantities constant along trajectories which are solutions of the EoM. They take the
same value along a single trajectory, although it can take different values in different trajectories.
The knowledge of (n− 1)m independent first integrals solves completely the EoM.

3. Point Symmetries of the Lagrangian
When the EoM result from the EL equations of a Lagrangian L, determining the extremals of the
action functional L =

∫
dtL(t, q, q′, . . . , q(n−1)), it is natural to wonder about the transformations

preserving this action functional (the importance of this is related to Noether theorem and
conserved quantities). These symmetries are usually called variational symmetries.

The infinitesimal generators X = ξ(t, q) ∂∂t + ηi(t, q)
∂
∂qi

of variational symmetries verify:

X [n−1](L) + LDtξ = DtB , (8)

for some function B. Note that if B 6= 0, although the action functional L is invariant, the
Lagrangian is invariant up to the total derivative DtB.

3.1. Noether theorem
By Noether theorem [6, 7, 8], with each variational symmetry a conserved quantity (first integral)
can be associated.

For a first-order Lagrangian L(t, q, q′), the conserved quantity associated with the variational
symmetry X = ξ(t, q) ∂∂t + ηi(t, q)

∂
∂qi

is:

N = (ηi − ξq′i)
∂L

∂q′i
+ ξL−B . (9)

4. Generalized Symmetries and contact structure
A generalized vector field on R×M is a vector field of the form:

X = ξ(t, q, q′, . . .)
∂

∂t
+ ηi(t, q, q

′, . . .)
∂

∂qi
. (10)

A generalized vector field is not a proper vector field in R×M in the sense that it does not
generate a flow on it (however it is a proper vector field in a suitable jet space). But further
computations can be carried out without inconsistencies as though it were a true vector field in
R×M . In particular, formulas for prolongations, invariance of the EoM and of the Lagrangian
apply without changes.

4.1. Evolutionary vector fields
Given fi(t, q, q

′, . . .), an evolutionary vector field with characteristic f is defined as:

Xf = fi
∂

∂qi
. (11)

To any generalized vector field X = ξ(t, q, q′, . . .) ∂∂t + ηi(t, q, q
′, . . .) ∂

∂qi
, there corresponds an

evolutionary vector field Xf with characteristics fi = ηi − ξq′i, in the sense that they generate

the same symmetry transformation. In fact, X [1] = (Xf )[1] + ξDt, and therefore, according to

(7), X [1] is a symmetry iff (Xf )[1] also is, and both vector fields coincide on solutions of the
EoM.
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4.2. Contact symmetries and contact structure
Generalized symmetries of first order are also known as contact symmetries since they preserve
the contact 1-form, also known as Poincaré-Cartan 1-form,

θL =
∂L

∂q′i
(dqi − q′idt) + Ldt , (12)

in the sense that LXθL = θL′ , with θL′ a contact 1-form for the Lagrangian L′ = X [1](L)+LDtξ
with the same EL EoM (see [9]).

Note that by (8) (extended to generalized symmetries), if X is a variational (non-point, in
general) symmetry, L′ = DtB, and θL′ = LXθL = df , for some function f .

The Poincaré-Cartan 1-form defines a contact structure on the odd dimensional manifold
R× T ∗M , where it is written as

θH = pidq
i −H dt , (13)

where H = piq
i′ − L is the Legendre transform of L and pi = ∂L

∂qi′
. θH is also known as the

Poincaré-Cartan 1-form associated with H.

5. Symmetries from the solution manifold
5.1. Hamiltonian formulation
Given a Poincaré-Cartan 1-form θH , its differential ωH = dθH = dpi ∧ dqi − dH ∧ dt, known
as the Poincaré-Cartan 2-form, has maximal rank. Its radical is generated, as a module, by a
vector field X̄H such that iX̄H

ωH = 0. This vector field can be written as:

X̄H =
∂

∂t
+
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
. (14)

The flow of X̄H is given by Hamilton’s EoM:

dt

ds
= 1 ,

dqi

ds
= Xqi

H =
∂H

∂pi
,

dpi
ds

= Xpi
H = −∂H

∂qi
. (15)

The time evolution is given in terms of the Poisson bracket in T ∗M :

X̄HF =
d

dt
F =

∂F

∂t
+ {F,H} . (16)

5.2. The solution manifold
Taking quotient on the contact manifold by Hamiltons’s equations (i.e. by the distribution
generated by X̄H), we obtain a symplectic manifold S parametrized by, say, the constants of
motion, with symplectic form ω = ωH (i.e. ωH simply “falls down” to the quotient).

On Darboux coordinates, ω = dPi ∧ dQi, where Pi , Q
i are canonically conjugated constants

of motion, and the Poisson bracket is given by:

{F,G} =
∂F

∂Pi

∂G

∂Qi
− ∂F

∂Qi
∂G

∂Pi
. (17)

Given a function F on S, the Hamiltonian vector field XF associated with F is given by:

XF = {F, ·} =
∂F

∂Pi

∂

∂Qi
− ∂F

∂Qi
∂

∂Pi
. (18)
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5.3. Hamilton-Jacobi transformation
The passage from the contact manifold parametrized by (qi, pj , t) to the solution manifold
parametrized by (Qi, Pj , τ) is given by the Hamilton-Jacobi transformation:

qi = qi(Q,P, τ) , pi = pi(Q,P, τ) , t = τ . (19)

Note that a trivial change in time, t = τ , has been introduced, in order to render the
transformation invertible (in the solution manifold the time evolution is frozen since it is
parametrized by constants of the motion, therefore τ decouples everywhere and can be safely
removed). In this way the associated change in the partial derivatives, necessary to compute
the transformation of vector fields, can be obtained:

∂

∂Qi
=

∂qj

∂Qi
∂

∂qj
+
∂pj
∂Qi

∂

∂pj

∂

∂Pi
=

∂qj

∂Pi

∂

∂qj
+
∂pj
∂Pi

∂

∂pj
(20)

∂

∂τ
=

∂

∂t
+
∂qj

∂τ

∂

∂qj
+
∂pj
∂τ

∂

∂pj
=
d

dt
.

Under the Hamilton-Jacobi transformation the Poincaré-Cartan 1-form is written as

θH = pidq
i −Hdt = PidQ

i + d(S − PiQi) , (21)

where S = S(q, P, t) is Hamilton’s Principal function, which coincides with the action integral∫
dtL(t, q, q′) (on solutions) up to a constant.
Note that we recover that ωH = dθH = dPi ∧ dQi = ω, therefore the Poincaré-Cartan 2-form

“falls down” to the Solution Manifold.
It should be stressed that the trivial change of variables τ = t in eq. (19) and the fact that the

constants of motion (Qi, Pj) are canonically conjugated variables have been chosen for simplicity.
In general we can take τ = τ(t, q, p) and (Qi, Pj) not canonically conjugated, but in this case the
HJ transformation does not coincide with the one generated by Hamilton’s Principal function
S. The expressions appearing in Secs. 5.1, 5.2 and 5.3 should be modified accordingly, but the
main conclusions still hold (see [10] for details)2.

5.4. Noether theorem in the Solution Manifold
All Hamiltonian vector fields XF generate symmetries since:

iXF
ω = −dF ⇒ LXF

ω = 0 ⇒ LXF
ωH = 0 , (22)

and this implies LXF
θH = df , therefore XF (when lifted to the contact manifold) is a variational

contact symmetry, and it might be (the evolutionary form of) a point symmetry.
In particular ∂

∂Qi and ∂
∂Pi

, when lifted by the inverse HJ transformation, i.e. the expressions

(20), are (basic) variational symmetries.
It should be stressed that in the expression of XF there is no “dynamical” information. It is

only when lifted by the inverse HJ transformation that the information on the Hamiltonian or
the Lagrangian appears.

2 This freedom, far from being a drawback of the method, is an important advantage, allowing to exploit the
natural (and non-canonical) symplectic structure of the Solution Manifold when it is a co-adjoint orbit of a Lie
group.

Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012009 doi:10.1088/1742-6596/538/1/012009

6



5.5. non-Noether symmetries in the Solution Manifold
If X 6= XF in S, then

LXω = iXdω + d(iXω) = d(iXω) = ω′ , (23)

with ω′ a closed 2-form: ω′ = dθ′ with θ′ = iXω. If θ′ = θH′ with H ′ the Legendre transform of
L′ providing the same EL EoM as L, then X, when lifted by the inverse HJ transformation, is
a (non-Noether) contact symmetry.

Note that in one dimension, since ω is a volume form, ω′ = fω for some function f on S (in
fact f = div(X)).

5.6. Lifting symmetries from the solution manifold
In the solution manifold S there are, obviously, infinitely many symmetries. The problem is
lifting these symmetries to the contact manifold by the inverse HJ transformation.

If the system is conservative3 (L 6= L(t), i.e H 6= H(t)), a formal solution can be obtained
through the exponential map:

q = eτXHQ

p = eτXHP (24)

t = τ .

The partial derivatives necessary to compute (20) can be obtained through (Y = Qi, Pi):

∂

∂Y
eτXH = eτXHe−τadXH (

∂

∂Y
) = eτXH

∞∑
n=0

(−1)n

n!
τnadnXH

(
∂

∂Y
) . (25)

In the previous formulas

adXH
(
∂

∂Y
) = [XH ,

∂

∂Y
]

adnXH
(
∂

∂Y
) = [XH , ad

n−1
XH

(
∂

∂Y
)] . (26)

This provides a series expansion in powers of τ for qi(Q,P, τ), pj(Q,P, τ) and their partial
derivatives with respect to Qi, Pj .

This way of obtaining symmetries from the solution manifold is, to the best of our knowledge,
new, and the formal series appearing in Eqs. (25)-(26) can be easily summed up when the vector
fields ( ∂

∂Qi ,
∂
∂Pj

, XH) close a finite dimensional Lie algebra4, since the terms in the expansion

can be arranged in a finite number of expansions (each one proportional to an element of a basis
of the Lie algebra) and these are numerical series that can be easily shown to be absolutely
convergent.

If ( ∂
∂Qi ,

∂
∂Pj

, XH) do not close a finite-dimensional Lie algebra, but the infinite-dimensional

Lie algebra generated from them is of finite (polynomial) growth [12], in the sense that the
successive Lie brackets appearing in eq. (25) are proportional to increasing powers of a small
perturbative parameter λ, in such a way that the vector space generated at each order of λ is
finite, then the formal series can be arranged in terms proportional to powers of λ (and each
of these terms is of the type considered before and therefore absolutely convergent). Note that
this is the situation when a conserved Hamiltonian is of the form H = H0 + λHI , where H0

represents an exactly solvable system, HI an interaction Hamiltonian (non-solvable) and λ is a
small coupling constant.

3 For time-dependent Hamiltonians, Dyson or Magnus expansion should be used instead, see [11, 10].
4 For this purpose a proper choice of the variables (Qi, Pj) can be crucial, see the comment before Sec. 5.4.
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6. Examples
In this section we shall provide some examples to illustrate the construction of symmetries from
the solution manifold. In all these cases the corresponding HJ transformation is known, and
therefore explicit formulas can be provided. In general, a construction like the one given in
Sec. 5.6 should be used to obtain approximate solutions and approximated symmetries. Note
however that for many purposes (for instance when the system is a small perturbation of an
exactly solvable Hamiltonian, see [10]) this is enough.

6.1. Symmetries of the free one-dimensional particle

For the free one-dimensional particle q̈ = 0, L = 1
2mq̇

2 and H = p2

2m , where p = mq̇. The HJ

transformation is q = Q+ P
mτ and p = P , providing the general solution to the EoM. Its points

symmetries are:

G1 = ∂
∂q = ∂

∂Q

G2 = t ∂∂q+ ∂
∂q̇ = m ∂

∂P

G3 = ∂
∂t = ∂

∂τ −
P
m

∂
∂Q

G4 = t2 ∂∂t + qt ∂∂q+(q − q̇t) ∂∂q̇ = τ2 ∂
∂τ +mQ ∂

∂P

G5 = t ∂∂t + q
2
∂
∂q−

q̇
2
∂
∂q̇ = τ ∂

∂τ + Q
2

∂
∂Q −

P
2
∂
∂P

G6 = q ∂∂q+q̇ ∂∂q̇ = Q ∂
∂Q + P ∂

∂P

G7 = qt ∂∂t + q2 ∂
∂q+q̇(q − q̇t) ∂∂q̇ = (Q+ P

mτ)τ ∂
∂τ

+Q2 ∂
∂Q +QP ∂

∂P

G8 = q ∂∂t−q̇
2 ∂
∂q̇ = (Q+ P

mτ) ∂
∂τ

−QP
m

∂
∂Q −

P 2

m
∂
∂P .

(27)

In the previous equation G1, . . . , G5 are variational point symmetries, whereas G6, G7, G8 are
non-variational point symmetries. The first expression corresponds to the first jet prolongation
in M , and the second expression corresponds to the solution manifold (extended with τ). Note
that in the second expression the terms in ∂

∂τ can be safely removed (the evolutionary form is
then obtained) since its objective was rendering the transformation geometrical.

General contact symmetries are obtained by:

X = f(Q,P )
∂

∂Q
+ g(Q,P )

∂

∂P
=

[
f(q − q̇t, q̇) +

t

m
g(q − q̇t, q̇)

]
∂

∂q

+
1

m
g(q − q̇t, q̇) ∂

∂q̇
, (28)

where this expression is in evolutionary form. The term in ∂
∂q̇ is a prolongation since

Dt(f) = Dt(g) = 0 (f and g are first integrals).
If div X = 0, then X is a Hamiltonian vector field providing, when lifted to the contact

manifold, a (non-geometrical, in general) variational symmetry. This is the case of G1 (f = 1,
g = 0), G2 (f = 0, g = m), G3 (f = −P/m, g = 0), G4 (f = 0, g = mQ) and G5 (f = Q/2,
g = −P/2). In this case these symmetries are rendered geometrical5 by the addition of a suitable
term in ∂

∂τ .
If div X 6= 0, then X is not a Hamiltonian vector field, therefore when lifted to the contact

manifold it provides a non-variational (non-geometrical in general) symmetry. This is the case

5 Note that in general this is not possible and for non-linear systems only a few symmetries turn out to be
geometrical.
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of G6 (f = Q, g = P ), G7 (f = Q2, g = QP ), and G8 (f = −QP/m, g = −P 2/m). Again,
these symmetries are rendered geometrical by the addition of a suitable term in ∂

∂τ .
Equation (27) provides all point symmetries of the free particle (either variational or not),

whereas (28) (with the addition of an arbitrary term in ∂
∂τ ) provides all contact symmetries of

the free particle, either variational, non variational, geometrical or non geometrical.

6.2. The free relativistic particle

For the free relativistic particle in one dimension, L = −mc2
√

1− q̇2

c2
≡ −mc2/γ, H = p0c,

where p = mγq̇ and p0 =
√
m2c2 + p2 = mcγ. The HJ transformation is: p = P , q = Q+ P

P0
ct,

where P0 =
√
m2c2 + P 2, providing the general solution to the EoM.

The basic symmetries in this case are:

∂

∂Q
=

∂

∂q
,

∂

∂P
=

∂

∂p
+
m2c3t

p3
0

∂

∂q
=

1

mγ3

(
t
∂

∂q
+

∂

∂q̇

)
.

Note that ∂
∂Q , when lifted to the solution manifold, is a variational point symmetry (reflecting

the translation invariance of the Lagrangian). However ∂
∂P is not a point symmetry, and cannot

be rendered a point symmetry by just adding of a term in ∂
∂τ .

If we consider the vector field Po3

m2c3
∂
∂P = t ∂∂q + ∂

∂q̇ , we recover the point (variational) symmetry
G2 of the free non-relativistic particle, which is however a non-variational symmetry for the

relativistic particle. A variational symmetry obtained from ∂
∂P is Po2

mc2
∂
∂P = 1

γ

(
t ∂∂q + ∂

∂q̇

)
, but

this is non geometrical.
To obtain a variational point symmetry from ∂

∂P , different expressions for the solutions should
be employed, using a non-canonical HJ transformation involving a change in time (i.e. τ 6= t). In
this way the expression of the relativistic boost generator can be recovered by lifting Po

c
∂
∂P (see

[10]). Note that this is not possible with the conventional canonical transformation generated
by the solution of the Hamilton-Jacobi equation.

6.3. The Pöschl-Teller potential
As a non-linear example, we shall consider a particle in a Pöschl-Teller potential, with Lagrangian

given by L = 1
2mq̇

2 − D
cos(αq)2

, and Hamiltonian H = p2

2m + D
cos(αq)2

. Here D is the energy of the

minimum of the potential, and α is related to the width of the potential.
Written in terms of ξ = 1

α sin(αq) and pξ = ∂L
∂ξ̇

,

H = (1− α2ξ2)
p2
ξ

2m
+

D

1− α2ξ2
=

1

2
mξ̇2 +

1

2
mω(E)2ξ2 +D , (29)

where ω(E) =
√

2E
D α is an energy-dependent frequency.

Note that written in this coordinates the Pöschl-Teller potential looks like a harmonic
oscillator. However, the frequency of the oscillations depends on the energy E, and therefore on
the particular trajectory considered. Therefore they are different systems, although the Pöschl-
Teller potential can be interpreted as an harmonic oscillator in the circle (or the n-sphere in
higher dimensions).
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The solutions of the EoM, providing the HJ transformation, are (see [13]):

q =
1

α
arcsin

[
sin(αQ) cos(ω(E)t) +

α

mω(E)
P cos(αQ) sin(ω(E)t)

]
(30)

p = mq̇ =
1

cos(αq)

[
cos(αQ) cos(ω(E)t)− α

mω(E)
P sin(αQ) sin(ω(E)t)

]
. (31)

In these solutions, the energy appearing in the frequency should be written in (Q,P ) variables.
Also, in the denominator of the rhs of the second line, q should be substituted by the rhs of the
first line.

The inverse of the HJ transformation can also be computed, resulting in:

Q =
1

α
arcsin

[
sin(αq) cos(ω(E)t)− α

mω(E)
p cos(αq) sin(ω(E)t)

]
(32)

P =
1

cos(αQ)

[
cos(αq) cos(ω(E)t) +

α

mω(E)
p sin(αq) sin(ω(E)t)

]
. (33)

In these expressions, the energy appearing in the frequency should now be expressed in (q, p)
variables. As before, in the denominator of the rhs of the second line, Q should be substituted
by the rhs of the first line.

Basic symmetries in the Solution Manifold lifted by the inverse HJ transformation can be
computed, although their expressions are rather involved. They can be obtained from the
Jacobian appearing in eq. (20), which is given by:

∂q

∂Q
= (A+Bt) cos(ωt) + (C +Dt) sin(ωt)

A =
cos(αQ)

cos(αq)

B =
2α3DP tan(αQ)

m2ω2 cos(αQ) cos(αq)

C = −4α3DP tan(αQ) +mαPω2 sin(2αQ)

2m2ω3 cos(αQ) cos(αq)

D = − 2α2D sin2(αQ)

mω cos(αQ)3 cos(αq)

∂p

∂Q
= (A+Bt) cos(ωt) + (C +Dt) sin(ωt)

A =
α
(
m2pω2 tan(αq) cos(αQ)−m2Pω2 sin(αQ)

)
m2ω2 cos(αq)

B =
α
(
α3DpP tan(αq) sin(2αQ)− 2αDm2ω2 sin2(αQ)

)
m2ω2 cos(αq) cos(αQ)3

C = −2α2D sin2(αQ) +mω2 cos4(αQ)

ω cos(αQ)3 cos(αq)

+
α2pP tan(αq)

(
α2D sin(2αQ) +mω2 sin(αQ) cos3(αQ)

)
m2ω3 cos(αQ)3 cos(αq)

D =
−α3DmPω2 sin(2αQ)− 2α3Dmpω2 tan(αq) sin2(αQ)

m2ω3 cos(αQ)3 cos(αq)
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∂q

∂P
= (A+Bt) cos(ωt) + (C +Dt) sin(ωt)

A = 0

B =
mω2 cos2(αQ)− 2α2D

m2ω2 cos(Qα) cos(αq)

C =
2α2D

m2ω3 cos(αQ) cos(αq)

D = −αP tan(αQ) cos(Qα)

m2ω cos(αq)

∂p

∂P
= (A+Bt) cos(ωt) + (C +Dt) sin(ωt)

A =
cos(αQ)

cos(αq)

B =
−4α3Dp tan(αq) + 2αmpω2 tan(αq) cos2(αQ)− αmPω2 sin(2αQ)

2m2ω2 cos(αQ) cos(αq)

C = −αmPω
2 sin(2αQ)− 4α3Dp tan(αq)

2m2ω3 cos(αQ) cos(αq)

D = −−4α2Dmω2 + 2m2ω4 cos2(αQ) + α2pPω2 tan(αq) sin(2αQ)

2m2ω3 cos(αQ) cos(αq)

In the previous formulas we have introduced ω ≡ ω(E), and at any occurrence of (Q,P ) in
the rhs of an equation, equations (32) and (33) should be used (we write the expressions in such
a way in order to make them more compact). As before, the expression of the energy in terms
of (q, p) inside ω should be used.

These basic symmetries are non geometrical. It is possible to obtain point symmetries for the
Pöschl-Teller potential (apart from the trivial one ∂

∂t) by lifting certain functions on the solution
manifold closing an sl(2,R) subalgebra of the Poisson algebra (see [13] for details).

6.4. Other examples
The method of lifting symmetries from the solution manifold can be applied to many other
examples, either in exact or in approximate form. Among them, the symmetries of the Kepler
problem, the λq4 potential, the particle in the circle, the Sine-Gordon model or Sigma models
can be addressed (see [10]).

7. Comments and outlook
The idea of importing symmetries from the solution manifold à la Arnold is, to the best of our
knowledge, new, and we feel that deserves further study. A more complete discussion, along
with a thoughtful classification of symmetries will be addressed in [10]. Let us comment only
on the extension of this classification to the quantum level.

The role of the solution manifold is played by the Hilbert space H0 of solutions of the time
dependent Schrödinger equation, which can be realized by fixing a value of time t0 (for instance
t0 = 0). The role of the Hamilton-Jacobi transformation is played by the inverse of the time

evolution operator Û(t, t0). The main difference is that, although we have Q̂ and P̂ operators,
wavefunctions depend only on one of the variables Q or P (or a combination thereof). In
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the context of Geometric Quantization, this means that they are polarized. The EoM is the
Schrödinger equation (which is also polarized).

The consequences of all this is that only variational symmetries survive. This can be easily
understood since the Schrödinger equation involves the Hamiltonian. Therefore, transformations
changing the Lagrangian to an alternative Lagrangian (leading to the same EL equations) are
not allowed at the quantum level.

A different approach to the symmetries of the quantum problem is that of Lie symmetries of
the Schrödinger equation, see [14, 15].
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