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Abstract. The properties of the Kronecker product are revisited in terms of Hubbard
operators. The simplest representation of a Hubbard operator X

i,j
n is a square matrix of size

n with an entry equal to 1 and zero elsewhere. This framework simplifies the calculation of
the Kronecker product of arbitrary matrices no matter the size or the number of the involved
factors. Some applications are presented, these include the algebra of permutation matrices, the
Hadamard matrix, the XXX Heisenberg model and the interaction of an atom with radiation
fields.

1. Introduction

The Kronecker (tensor or direct) product ‘⊗’ is widely used in several areas of mathematics and
theoretical physics [1–9]. This is particularly useful in the description of multipartite quantum
systems S = S1+S2+ · · ·+SN , the pure states of which are represented by vectors in the Hilbert
space H = H1 ⊗H2 ⊗ · · · ⊗HN , with Hk the pure state space of the kth subsystem Sk [10–12].
For finite-dimensional Hilbert spaces (dimHk = nk < ∞) one has dimH = n1 · · ·nN , so that
any operator Ak defined to act on Hk can be represented by a square matrix of order n2

k, this
can be also promoted to act on the entire space H as follows

Ak ↔ I1 ⊗ I2 ⊗ · · · ⊗ Ik−1 ⊗Ak ⊗ Ik+1 ⊗ · · · IN ,

where Ik is the identity operator in Hk. Thus, Ak must be represented by a square
matrix of order (n1 · · ·nN )2. As the Kronecker product of two matrices of any order is
the block matrix A ⊗ B = [ai,jB], we realize that the promoted operator Ak has at most
n1n2 · · ·nk−1n

2
knk+1 · · ·nN < (n1 · · ·nN )2 entries different from zero. This last fact suggests the

looking for simple algorithms to calculate the Kronecker product of operators.
In a recent work we have applied the Hubbard operators as the building-blocks of the

Kronecker product A ⊗ B ⊗ C ⊗ · · · [13]. These are two-indexed operators X i,j fulfilling the
properties [14–16]:

i) Xi,jXk,m = δjkX
i,m (multiplication rule)

ii)
∑
k

Xk,k = I (completeness)

iii) (Xi,j)† = Xj,i (non-hermiticity)

iv) [X i,j , Xk,m]± = δjkX
i,m ± δmiX

k,j (commutation rules)
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Let {|ψk〉, k ∈ I ⊆ Z
+} be an orthonormal basis of the pure state space H with |ψk〉 the

column vector having 1 in the kth row and zero elsewhere. The Hubbard operators X i,j cause
the transition from the state |ψj〉 to the state |ψi〉 and can be expressed as the outer products

Xi,j = |ψi〉〈ψj |, i, j ∈ I.
That is, in such a representation the Hubbard operator Xi,j corresponds to an square matrix
that has all the entries equal to zero except the one at the ith row and jth column, where it
takes the value 1. In this context any linear operator O : H → H admits the X-representation

O =
∑
i,j∈I

oi,jX
i,j
n , oi,j = 〈ψi|O|ψj〉.

Using the X-representation the algebra of square matrices can be operated in compact form, no
matter the size or the number of the factors.

In this contribution we follow the approach introduced in [13] to summarize some of
the Kronecker product properties in terms of Hubbard operators. In X-representation the
algebraic properties associated to multipartite systems can be analyzed in simple form since even
complicated calculations involving large matrices are reduced to simple relations of subscripts.
Our interest is to address some applications of this representation in the study of permutation
matrices, quantum logic gates, and some interaction models as the Heisenberg or the Jaynes-
Cummings ones. With this aim we introduce the notation and basic definitions in Section 2.
The properties of the Kronecker product in X-representation are revisited in Section 3 and some
of the applications are reported in Section 4. Some final remarks are presented in Section 5.

2. Notation and basic definitions

Let Kn = sp{|eni 〉}ni=1 be a vector space of dimension n defined on the field K. The basis vectors
|enk〉 are orthonormal n-tuples with 1 in the position k and zero elsewhere. Any element |x〉 ∈ K

n

is represented by a column vector

|x〉 =
n∑

k=1

xk|enk〉 ≡ (x1, x2, . . . , xn)
T , x� = 〈en� |x〉 ∈ K.

The Hermitian transpose of the ket-vector |x〉 is represented by the bra-vector

|x〉† := 〈x| = (x†1, x
†
2, . . . , x

†
n) =

n∑
k=1

x†k〈enk |, x†� = 〈x|en� 〉 ∈ K,

with x†k = xk if K = R and x†k = xk for K = C. Here z stands for the complex conjugate of
z ∈ C. The inner product of two vectors |x〉 and |y〉 yields

〈x|y〉 =
n∑

k,�=1

x†ky�〈enk |en� 〉 =
n∑

k=1

x†kyk.

Therefore (〈x|y〉)† = 〈y|x〉, so that the vector space K
n is Euclidean (Hermitian) with linear

(sesquilinear) metric if K = R (K = C) [17].
The outer product of |x〉 and |y〉 yields

|x〉〈y| =
n∑

i,j=1

xiy
†
j |eni 〉〈enj | ≡

n∑
i,j=1

xiy
†
jX

i,j
n ,
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where the “dyadic” matrices

Xi,j
n = |eni 〉〈enj |, i, j = 1, 2, . . . , n (1)

are Hubbard operators. Indeed, they satisfy (i) the multiplication rule

Xi,j
n Xk,�

n = |eni 〉〈enj |enk〉〈en� | = δjkX
i,�
n , (2)

are (ii) complete

In =
n∑

i=1

Xi,i
n , (3)

and (iii) non-hermitian since(
Xi,j

n

)T
= (|eni 〉〈enj |)T = (〈enj |)T (|eni 〉)T = |enj 〉〈eni | = Xj,i

n (4)

implies
(
Xi,j

n

)†
=
(
Xi,j

n

)T
= Xj,i

n . Finally, they satisfy the (iv) commutation relationships

[Xi,j
n , Xk,m

n ]± = Xi,j
n Xk,m

n ±Xk,m
n Xi,j

n = δjkX
i,m
n ± δmiX

k,j
n . (5)

The action of these X operators on the vector space K
n is defined by the rule

Xi,j
n |enk〉 = δjk|eni 〉 ⇒ Xi,j

n |x〉 = xj |eni 〉, (6)

so that their matrix elements are easily computed

〈eni |Xk,�
n |enj 〉 = δ�j〈eni |enk〉 = δ�jδik. (7)

Using the completeness (3) we can write any n-square matrix A as the appropriate linear
combination of Hubbard operators

A =
n∑

i,j=1

ai,jX
i,j
n , ai,j ∈ K. (8)

Therefore the complex conjugate A, the transpose AT , and the adjoint A† of A are computed
as follows

A =
n∑

i,j=1

ai,jX
i,j
n , AT =

n∑
i,j=1

ai,jX
j,i
n , A† =

n∑
i,j=1

a†i,jX
j,i
n . (9)

Considering (8) and (6) one gets

A|enj 〉 =
n∑

k=1

ak,j |enk〉, (10)

so that

〈eni |A|enj 〉 =
n∑

k,�=1

ak,�δi,kδ�j = ai,j ⇒ TrA =
n∑

i=1

〈eni |A|eni 〉 =
n∑

i=1

ai,i, (11)

and

A|x〉 =
n∑

k,j,�=1

ak,jx�X
k,j
n |en� 〉 =

n∑
k,�=1

ak,�x�|enk〉. (12)
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Finally, the usual matrix product is closed

AB =

⎛⎝ n∑
i,j=1

ai,jX
i,j
n

⎞⎠⎛⎝ n∑
k,�=1

bk,�X
k,�
n

⎞⎠ =

n∑
i,�=1

(
n∑
k

ai,kbk,�

)
Xi,�

n = C, (13)

with C the n-square matrix

C =
n∑

i,�=1

ci,�X
i,�
n , ci,� =

n∑
k=1

ai,kbk,�, (14)

as expected.

3. The X-representation of the Kronecker algebra

The Kronecker product follows from the next definition

Definition 1. Let A = [ai,j ] and B = [br,s] be respectively matrices of order m× n and
k × � over the field K. The Kronecker product A⊗ B is the matrix of order mk × n� over
the field K defined as A⊗B = [ai,jB].

Let us consider the vector space K
n1n2 on which the matrix A⊗ B acts on. Here A and B are

square matrices defined to act on K
n1 and K

n2 respectively. We have a second definition

Definition 2. Let |en1
i1
〉 and |en2

i2
〉 be basis vectors of K

n1 and K
n2 respectively. The

Kronecker product |en1
i1
〉 ⊗ |en2

i2
〉 is the n1n2-tuple having 1 at (i1 − 1)n2 + i2, and zero in

all other entries.

The vector space K
n1n2 is built according to the following proposition which is introduced

without a proof.

Proposition 1. Let K
n1 = Sp

{|en1
i1
〉}n1

i1=1
and K

n2 = Sp
{|en2

i2
〉}n2

i2=1
be vector spaces

defined on the field K. The set of all the Kronecker products |en1
i1
〉⊗|en2

i2
〉 is orthonormal and

spans a vector space of dimension n1n2, writtenK
n1n2 = Sp{|en1

i1
〉⊗|en2

i2
〉, i1 = 1, . . . , n1; i2 =

1, . . . , n2}, with the following axioms (α, β, γ, η are elements of K):

(i) (α|en1
i1
〉)⊗ |en2

i2
〉 = α(|en1

i1
〉 ⊗ |en2

i2
〉) = |en1

i1
〉 ⊗ (α|en2

i2
〉)

(ii) (α|en1
i1
〉+ β|en1

i1
〉)⊗ |en2

i2
〉 = α(|en1

i1
〉 ⊗ |en2

i2
〉) + β(|en2

i1
〉 ⊗ |en2

i2
〉)

(iii) |en1
i1
〉 ⊗ (γ|en2

i2
〉+ η|en2

i2
〉) = γ(|en1

i1
〉 ⊗ |en2

i2
〉) + η(|en1

i1
〉 ⊗ |en2

i2
〉)

In general one has two different forms to write the vector |x〉 ∈ K
n1n2 ; this can be done by using

either two independent indices i1, i2,

|x〉 =
n1∑

i1=1

n2∑
i2=1

xi1,i2 |en1
i1
〉 ⊗ |en2

i2
〉,

or a single index k,

|x〉 =
n1n2∑
k=1

x̃k|en1n2
k 〉, k = (i1 − 1)n2 + i2.

Notice that the latter expression considers the construction of the Kronecker products
|en1n2

k=(i1−1)n2+i2
〉 = |en1

i1
〉 ⊗ |en2

i2
〉 as this is indicated in Definition 2. In correspondence,

there are n1n2 different coefficients xi1,i2 that can be mapped into the x̃k ones and vice
versa. The generalization of Definition 1 and Proposition 1 to the case of N factors is
straightforward. In that case the state space K

n1n2...nN is spanned by the basis vectors
|en1n2...nN

k′ 〉 = |en1
i1
〉 ⊗ |en2

i2
〉 ⊗ · · · ⊗ |enN

iN
〉, with k′ properly defined.
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Proposition 2. LetXi,j
m andXk,�

n be two Hubbard operators of order n andm respectively.
Then the ⊗-product

Xi,j
m ⊗Xk,�

n = Xn(i−1)+k,n(j−1)+�
mn , (15)

is a Hubbard operator of order mn.

Proof. The proof follows from Definition 1, explicitly

Xi,j
m ⊗Xk,�

n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0(i−1)×(j−1)

... 0(i−1)×(n−j)

0
0 · · · 0 1 0 · · · 0

0

0(n−i)×(j−1)

... 0(n−i)×(n−j)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊗Xk,�

n

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0[n(i−1)+k−1]×[n(j−1)+�−1]

... 0[n(i−1)+k−1]×[mn−n(j−1)−�]

0
0 · · · 0 1 0 · · · 0

0

0[mn−n(i−1)−k]×[n(j−1)+�−1]

... 0[mn−n(i−1)−k]×[n(j−1)+�−1]

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= X

n(i−1)+k,n(j−1)+�
mn . �

This last result shows that the tensor product is closed on the set of Hubbard operators. The
following properties are also fulfilled

Proposition 3. Let Xβ,γ
α be Hubbard operators of order α and take λ ∈ K. Then

i) Xi,j
m ⊗Xk,�

n �= Xk,�
n ⊗Xi,j

m in general.

ii)
(
Xi,j

m ⊗Xk,�
n

)T
=
(
X i,j

m

)T
⊗
(
Xk,�

n

)T
.

iii)
(
λXi,j

m

)
⊗Xk,�

n = λ
(
Xi,j

m ⊗Xk,�
n

)
= X i,j

m ⊗
(
λXk,�

n

)
.

iv)
(
X i,j

m +Xr,s
m

)
⊗Xk,�

n = Xi,j
m ⊗Xk,�

n +Xr,s
m ⊗Xk,�

n .

v) Xk,�
n ⊗

(
Xi,j

m +Xr,s
m

)
= Xk,�

n ⊗Xi,j
m +Xk,�

n ⊗Xr,s
m

vi)
(
X i,j

m ⊗Xk,�
n

)
⊗Xr,s

p = Xi,j
m ⊗

(
Xk,�

n ⊗Xr,s
p

)
.

Proof. See Ref. [13], pp. 230.

Thus, the product ⊗ is distributive over ordinary matrix addition (iv), (v), associative (vi),
compatible with ordinary matrix transposition (ii) as well as with matrix multiplication by an
scalar (iii) and, in general, non-abelian (i). We can use now the X-representation of n-square
matrices (8), and the properties included in the Propositions 1–3, to define the ⊗-product of an
arbitrary number of operators Ak in terms of simple relations of subscripts. We have the next
proposition.

Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012007 doi:10.1088/1742-6596/538/1/012007

5



Proposition 4. Let Ar =
[
a
(r)
i,j

]
be a square matrix of order nr. The Kronecker product

A1 ⊗ A2 ⊗ · · · ⊗ Ak+1 is the square matrix of order n(k) = n1n2 · · ·nk+1, expressed as the
following linear combination of Hubbard operators

A = A1 ⊗A2 ⊗ · · · ⊗Ak+1 =
n(k)∑
p,q=1

ã (k)
p,q Xp,q

n(k) , k ≥ 1, (16)

where

ã (k)
p,q = a (1)

pk,qk

k−1∏
s=0

a
(k−s+1)
ps+nk−s+1−nk−s+1ps+1, qs+nk−s+1−nk−s+1qs+1

, (17)

and

ps =

⌈
p∏s

�=1 nk−�+2

⌉
, qs =

⌈
q∏s

�=1 nk−�+2

⌉
. (18)

Here
�x� = min{z ∈ Z : x ≤ z} (19)

is the ceiling function of x ∈ R (this yields the smallest integer greater than or equal to x).

Proof. See Ref. [13], pp. 238-39.

The results reported in the previous propositions allow to recover all the known properties
of the Kronecker product of square matrices. Most of them are straightforwardly extended to
matrices of arbitrary order though some caution is necessary (see the discussion on the matter
in Section 2.2 of [13]). In this context we present the next theorems and propositions without a
proof (the proofs inX-representation can be found in our review [13], for conventional approaches
see e.g. [7–9]).

Theorem 1. Let A, B and C be n-square matrices and λ ∈ K. Then

i) In general, A⊗B �= B ⊗A.

ii) (A⊗B)† = A† ⊗B† and (A⊗B)T = AT ⊗BT .

iii) (λA)⊗B = λ(A⊗B) = A⊗ (λB).

iv) (A+B)⊗ C = A⊗ C +B ⊗ C.

v) A⊗ (B + C) = A⊗B +A⊗ C.

vi) (A⊗B)⊗ C = A⊗ (B ⊗ C).

Theorem 2. Let A = [ai,j ], C = [cp,q], and B = [bk,�], D = [dr,s], be pairs of n and m-
square matrices respectively. The usual matrix product of the nm-square matrices A ⊗ B
and C ⊗D fulfills

(A⊗B)(C ⊗D) = AC ⊗BD. (20)

That is, the Kronecker product of square matrices is compatible with ordinary matrix
multiplication.

Proposition 5. Let A = [ai,j ] and B = [bk,�] be two square matrices of order n and m
respectively. Then

Tr(A⊗B) = Tr(A)Tr(B) = Tr(B ⊗A).

Proposition 6. Let A = [ai,j ] and B = [bk,�] be two n-square matrices. Then

Det(A⊗B) = (DetA)n(DetB)n. (21)

Additional properties (and proofs) of the Kronecker product of matrices can be found in the
books [5–7]. The most recent summary of the properties of the ⊗ operation has been reported
in [9] (see also [8]).
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4. Applications

4.1. Permutation matrices

As a first example consider a permutation defined by the bijection π of the set of natural numbers
S = {1, . . . , n} onto itself. In the Cauchy’s two-line notation this map reads as

π =

(
1 2 · · · n

π(1) π(2) · · · π(n)

)
.

The set of all n! permutations of S forms the symmetric (or permutation) group Sn. The identity
element πe is defined as πe(k) = k for all k in S. A linear representation of Sn is obtained by
assigning a matrix Pπ per each permutation π; this is a square matrix of order n that has only
one entry 1 per row and column, and is zero elsewhere. In X-representation we have

Pπ =
n∑

j=1

Xj,π(j)
n . (22)

Then the product of Pσ and Pπ, two permutation matrices of order n, yields

PσPπ =
n∑

k.�=1

Xk,σ(k)
n X�,π(�)

n =
n∑

k.�=1

δσ(k),�X
k,π(�)
n =

n∑
k=1

Xk,π(σ(k))
n = Pπ◦σ. (23)

This shows that the composition π◦σ of two permutations π and σ is obtained from the product
of the corresponding matrices. It also follows that in general the product of permutation matrices
is non-commutative as PπPσ = Pσ◦π and σ ◦ π �= π ◦ σ. The inverse of Pπ is the matrix P T

π ,
indeed

PπP
T
π =

n∑
k,�=1

δπ(k),π(�)X
k,�
n =

n∑
k=1

Xk,k
n = In. (24)

In similar form, P T
π Pπ = In, so that (PσPπ)

−1 = P−1
π P−1

σ . On the other hand, the action of a
permutation matrix Pπ on a vector |x〉 ∈ K

n reads

Pπ|x〉 =
n∑

j,k=1

xkX
j,π(j)
n |enk〉 =

n∑
j,k=1

xkδπ(j),k|enj 〉 =
n∑

j=1

xπ(j)|enj 〉. (25)

Now we consider the application of the Kronecker product to construct permutation matrices.

Theorem 3. The square matrix

Π =

n∑
i,j=1

Xi,j
n ⊗Xj,i

n (26)

is a permutation matrix of order n2, defined by the rule

π(p) = n(p+ n− 1)− (n2 − 1)p′, p = 1, 2, . . . , n2, (27)

with
p′ =

⌈ p
n

⌉
(28)

the ceiling function applied on p
n
.
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Proof. See Ref. [13], pp 231.

To get some insight on the meaning of the permutation matrix (26) let us consider an
arbitrarycontravariant tensor of rank 2:

|x1〉 ⊗ |x2〉 =
n∑

i1,i2=1

xi1xi2 |eni1〉 ⊗ |eni2〉 =
n∑

i1,i2=1

xi1xi2 |en
2

(i1−1)n+i2
〉. (29)

The action of Π on this last vector reads Π(|x1〉 ⊗ |x2〉) = |x2〉 ⊗ |x1〉. Thus, relative to
the indices labeling the contravariant tensor (29), the operator Π corresponds to the bijection
π2 : (1, 2) → (2, 1). Hence Π ≡ Pπ2 ∈ S2. Indeed, there are only 2! = 2 different permutations
on the set {1, 2}, these are the identity πe ≡ π1 and π2. In Hubbard representation we have

Pπ1 =
n∑

i=1

Xi,i
n ⊗Xi,i

n ≡
n∑

i,j=1

δijX
i,j
n ⊗Xj,i

n , Pπ2 = Π. (30)

Therefore one arrives at the symmetrization operator

S(2) =
1
2(Pπ1 + Pπ2) =

1

2

n∑
i,j=1

(1 + δij)X
i,j
n ⊗Xj,i

n , (31)

together with the anti-symmetrization operator

A(2) =
1
2 [χ(π1)Pπ1 + χ(π2)Pπ2 ] =

1

2

n∑
i,j=1

[χ(π1) + χ(π2)δij ]X
i,j
n ⊗Xj,i

n , (32)

where χ(π) is the parity of the bijection π [17]. The generalization of the above results to tensors
of arbitrary rank is straightforward:

Proposition 7. The operators

S(p) =
1

p!

p∑
�=1

Pπ�
and A(p) =

1

p!

p∑
�=1

χ(π�)Pπ�
(33)

with π� ∈ Sp, π1 ≡ πe, and Pπ�
a definite linear combination of the Kronecker products

Xi1,j1
n ⊗Xi2,j2

n ⊗ · · ·Xip,jp
n , ik, jk ∈ {1, . . . , n},

produce respectively the symmetrization and anti-symmetrization of the contravariant
tensors of rank p.

The Kronecker product of permutation matrices is also compatible with the composition of
permutations.

Theorem 4. Let Pπ(n) and Pσ(m) be the n and m-permutation matrices defined by the
rules π and σ respectively. The Kronecker product Pπ(n)⊗ Pσ(m) is the nm-permutation
matrix Pα(n,m) defined by the rule

α(p) = m[π(p′)− 1] + σ(p−mp′ +m), (34)

with p′ = � p
m
�.
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Proof. See Ref. [13], pp 233.

Although the product X i,j
n ⊗ Xk,�

m is non-abelian in general (Proposition 3i), it is possible to

arrive at Xk,�
m ⊗Xi,j

n by applying the appropriate permutation of rows and columns in X i,j
n ⊗Xk,�

m .
That is, these last operators must be permutation equivalent.

Proposition 8. The Kronecker productXi,j
n ⊗Xk,�

m is permutation equivalent toXk,�
m ⊗Xi,j

n .
That is, there exist Pπ, a permutation matrix of order nm, such that

P T
π

(
Xi,j

n ⊗Xk,�
m

)
Pπ = Xk,�

m ⊗Xi,j
n . (35)

Proof. See Ref. [13], pp 233.

In general, for any square matrices A and B we have

Theorem 5. Let A = [ai,j ] and B = [bk,�] be two square matrices of order n and m
respectively. The Kronecker product A⊗B is permutation equivalent to B ⊗A.

Proof. From Proposition 8 we know that there exists a permutation matrix P such that (35) is
true. Then, by linearity in the conventional matrix product we have

P T (A⊗B)P =

n∑
i,j

m∑
k,�

ai,jbk,�

[
P T
(
Xi,j

n ⊗Xk,�
m

)
P
]

=

n∑
i,j

m∑
k,�

bk,�ai,jX
k,�
m ⊗Xi,j

n = B ⊗A. �

Permutation matrices play an important role in combinatorics and quantum mechanics (see e.g.
Ch. 13 of Ref. [18] and Ref. [17]). For example, the Schrödinger equation is invariant under the
permutation of electrons since the physical equivalence of all these particles.

4.2. The Haddamard matrix

The n-square matrices with ±1 entries and having pairwise orthogonal rows are named after
Hadamard [19]. In the simplest case (n = 2) one has

H =
1√
2

2∑
i,j=1

(−1)(i−1)(j−1)Xi,j
2 =

1√
2

(
1 1
1 −1

)
. (36)

This operator is unitary and its action on a vector |x〉 ∈ K
2 reads

H|x〉 = 1√
2

2∑
i,k=1

(−1)(i−1)(k−1)xk|e2i 〉 =
1√
2

[
(x1 + x2)|e21〉+ (x1 − x2)|e22〉

]
. (37)

The multiplication of H with itself yields

H2 = HH =
2∑

i,�=1

ci,�X
i,�
2 = I2, ci,� =

1 + (−1)i+�

2
= δi,�. (38)

The Kronecker powers of Hadamard matrices H⊗k+1 are of interest in quantum computing
algorithms. Let us give a concrete realization of such powers in terms of Hubbard operators
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Proposition 9. Let H be the Hadamard matrix (36), then

H⊗k+1 =
1√
2k+1

2k+1∑
p,q=1

(−1)�p·�q Xp,q

2k+1 , k ≥ 1, (39)

with ps = � p
2s �, qs = � q

2s �, and


p · 
q :=
k∑

s=0

(ps − 1)(qs − 1). (40)

Proof. See Ref. [13], pp 236.

The action of H⊗k+1 on the basis vectors of K2k+1
reads

H⊗k+1|e2k+1

j 〉 = 1√
2k+1

2k+1∑
p=1

(−1)
∑k

s=0(ps−1)(js−1)|e2k+1

p 〉, (41)

with ys = � y
2s � for y = p, j. As an example consider the case k = 1 for which we have

H4 = H ⊗H = H⊗2. Explicitly,

H4 = H⊗2 =
1

2

4∑
p,q=1

(−1)(p−1)(q−1)+(� p

2
�−1)(� q

2
�−1)Xp,q

4 =
1

2

⎛⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞⎟⎟⎠ .

Hence,

2H⊗2|e4j 〉 →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|e41〉+ |e42〉+ |e43〉+ |e44〉, j = 1

|e41〉 − |e42〉+ |e43〉 − |e44〉, j = 2

|e41〉+ |e42〉 − |e43〉 − |e44〉, j = 3

|e41〉 − |e42〉 − |e43〉+ |e44〉, j = 4

In quantum computing it is usual to express the basis vectors |e4k〉 in the binary form

|00〉 ≡ |e41〉, |01〉 = |e42〉, |10〉 = |e43〉, |11〉 = |e44〉.
To translate the above results into the binary form, we present the following definition

Definition 3 Consider a positive integer x ≤ 2k+1 with k ∈ N. The expansion of x in
powers of 2 is defined by the binary coefficients xs ∈ {0, 1}, s = 0, 1, . . . , k + 1, as follows

x =
k+1∑
i=0

xi2
i. (42)

The coefficients of the linear combination (39) can be written in binary form according to the
following proposition

Proposition 10 Let p and q be respectively the i-th and j-th powers of 2 with i, j =
0, 1, . . . , k + 1, and k ∈ N. Then

(−1)
∑k

s=0(�
p

2s
�−1)(� q

2s
�−1) = (−1)

∑k
s=0(p−1)s(q−1)s , (43)

where (p− 1)s and (q − 1)s are the s-th binary coefficients of p− 1 and q − 1 respectively.
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Proof. See Ref. [13], pp 237.

We finally arrive at

2H⊗2|e4j 〉 →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)0·0+0·0|e41〉+ (−1)1·0+0·0|e42〉+ (−1)0·0+0·1|e43〉+ (−1)1·0+1·0|e44〉, j = 1

(−1)0·1+0·0|e41〉+ (−1)1·1+0·0|e42〉+ (−1)0·1+1·0|e43〉+ (−1)1·1+1·0|e44〉, j = 2

(−1)0·0+0·1|e41〉+ (−1)1·0+0·1|e42〉+ (−1)0·0+1·1|e43〉+ (−1)0·1+1·1|e44〉, j = 3

(−1)0·1+0·1|e41〉+ (−1)1·1+0·1|e42〉+ (−1)0·1+1·1|e43〉+ (−1)1·1+1·1|e44〉, j = 4

On the other hand, in binary form the basis vectors are given by the rule

|e2k+1

j 〉 → |j − 1〉(k) := |(j − 1)0, (j − 1)1, . . . , (j − 1)k〉,

with (j−1)s ∈ {0, 1} the binary coefficients of j−1 up to 2k. Finally, given a vector |x〉 written
in binary notation, the equation (41) reads

H⊗n|x〉 = 1√
2n

∑
z

(−1)x·z|z〉,

where |z〉 is also in binary form and n = 2k+1.

4.3. The Heisenberg XXX model

In this section we analyze the diagonalization of n-level Hamiltonians of the form

H =

n∑
p=1

εp Xp,p
n +

∑
p,q=1
p �=q

Vp,q Xp,q
n , Vq,p = V p,q. (44)

We use the unitary transformation method introduced in reference [20] (see also [21]). This
method is iterative and demands the off-diagonal elements of the transformed Hamiltonian

H ′ = Uk,m(α)HU †
k,m(α) =

n∑
p=1

ε′p Xp,p
n +

∑
p,q=1
p �=q

V ′
p,q Xp,q

n , (45)

be equal to zero. Here the set of operators

Uk,m(α) = exp
(
αXk,m

n − aXm,k
n

)
, m > k = 1, 2, . . . , n, α = |α|eiμ, (46)

are unitary and α is a complex parameter. Moreover, the coefficients in the transformed
Hamiltonian (45) are given by

ε′k = 1
2

[
εk + εm + (εk − εm) cos 2|α|+ 2�(Vk,me−iμ) sin 2|α|] ,

ε′m = 1
2

[
εk + εm − (εk − εm) cos 2|α| − 2�(Vk,me−iμ) sin 2|α|] ,

V ′
k,meiμ = 1

2

[
1
2(εm − εk) sin 2|α|+ Vk,me−iμ cos2 |α| − V k,meiμ sin2 |α|] ,

V ′
k,p = Vk,p cos |α|+ Vm,pe

iμ sin |α|,
V ′
m,p = Vp,m cos |α| − Vp,ke

iμ sin |α|,
ε′p = εp, V ′

p,q = Vp,q p, q �= k,m.

(47)
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The condition V ′
k,m = 0 produces

tan 2|α| = 2(−1)κ+1|Vk,m|
εm − εk

. (48)

Hence

ε′k =
1

2
−
√

1

4
(εm − εk)2 + |Vk,m|2, ε′m =

1

2
+

√
1

4
(εm − εk)2 + |Vk,m|2. (49)

The Hamiltonian (44) is diagonalized by iterating the above procedure as many times as
necessary. Now we consider a system of n spin-1/2 particles that interact according to the
Hamiltonian

H = −1

2

n∑
j=1

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

)
, (50)

σk
j = I2 ⊗ . . .⊗ I2︸ ︷︷ ︸

j−1

⊗σk ⊗ I2 ⊗ . . .⊗ I2.

Here σk
n+1 := σk

1 , with σk, k = x, y, z, standing for the Pauli matrices. Such a Hamiltonian is
known as the Heisenberg Hamiltonian [21]. We will analyze the case when Jx = Jy = Jz = J
(the XXX-model) and n = 2

H = −J

2
(σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) . (51)

In Hubbard representation, the last Hamiltonian reads

H = −J

4

(
X1,1

4 −X2,2
4 −X3,3

4 +X4,4
4

)
− 2J

(
X2,3

4 +X3,2
4

)
. (52)

To diagonalize it we make only a single transformation U2,3(α) and from (47) we get cos (2|α|) =
0, sinμ = 0, and the system

ε′1 = ε1 = −J
4 , ε′2 =

1
2(ε2 + ε3)− V2,3 =

9
4J,

ε′3 =
1
2(ε2 + ε3) + V2,3 = −7

4J, ε′4 = ε4 = −J
4 .

(53)

Therefore we arrive at the diagonal Hamiltonian

H′ = −J

4

(
X1,1

4 − 9X2,2
4 + 7X3,3

4 +X4,4
4

)
. (54)

4.4. Atom + Field models of interaction

In this section we consider the problem of the interaction between a two-level atom (qubit)
and a radiation field from both the semiclassical and quantized approaches. In both cases, the
Hubbard operators are useful in the construction of the time evolution operator.

4.4.1. Semiclassical model. The ground and excited states of a qubit will be denoted as |−〉
and |+〉, respectively. The corresponding Hamiltonian is given by

H0 = �
ωa

2
σ3, (55)

Symmetries in Science XVI IOP Publishing
Journal of Physics: Conference Series 538 (2014) 012007 doi:10.1088/1742-6596/538/1/012007

12



here ωa is the transition frequency. On the other hand, the interaction Hamiltonian is given
through the dipolar approximation

HI = −
p · 
E(t). (56)

Here 
p is the dipolar momentum of the atom and 
E(t) is a classical radiation field of the form


E(t) = E (e−iωf t + eiωf t
)
êf , (57)

where E is the amplitude, ωf the frequency and êf the polarization vector. Thus, the total
Hamiltonian is therefore H = H0 +HI . In the rotating wave approximation this Hamiltonian
H can be written in a free-units system as [22]:

H =
Δ

2
σ3 + g(σ+ + σ−), Δ = 1− ωf/ωa, (58)

with Δ the detuning and g the coupling constant. In Hubbard notation the previous Hamiltonian
is written as follows

H = H0 +HI , H0 =
Δ

2

2∑
p=1

Xp,p
2 , HI = g

2∑
p=1

Xp,3−p
2 . (59)

In the case of exact resonance, the time evolution operator is given by

U(t) = eiHI t =
2∑

p,q=1

up,q(t)X
p,q
2 , up,q(t) = ei

π
2
|p−q| cos

(
gt− π

2
|p− q|

)
(60)

The last expression (60) is useful in considering the evolution of two non-interacting qubits. The
time evolution in this case would read

U = U1(t)⊗ U2(t), (61)

where each one of the Ui(t) are written in terms of the X-operators

Ui(t) =
2∑

p,q=1

up,q(t) X
p,q
2 , i = 1, 2. (62)

According to equation (15), the time evolution operator of the whole system reads

U(t) =

4∑
p,q=1

up′,q′(t) up+2−2p′,q+2−2q′(t) X
p,q
4 . (63)

The time evolution of any state in the corresponding Hilbert space is obtained by the action of
this last operator.

4.4.2. Jaynes-Cummings model. The Jaynes-Cummings model describes the interaction
between a single atom and a single mode of the quantized electromagnetic field [23]. This
considers the Hilbert space associated to the composite system atom+field, so that the vector
states of the entire system are spanned by the Kronecker products of the basis vectors belonging
to each of the subsystems. In this case, the Hamiltonian includes three parts: the free atom
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Hamiltonian given in equation (55), the field alone Hf and the interaction term, given by the
Jaynes Cummings Hamiltonian

HI = γ(σ+a+ σ−a†). (64)

where a and a† are the boson ladder operators. Using the Kronecker algebra of the Hubbard
operators it is easy to show that H0 + Hf and HI are first integrals of the system [24]. The
Hamiltonian can be written in terms of the Hubbard operators

HI =

2∑
p=1

Np Xp,3−p Np =
√

N + 2− p, (65)

where the boson number operator N = a†a has been promoted to act on the vector space of the
entire atom+field system: N = Iat⊗N , with Iat the identity operator in the vector space of the
atom. Using the X-operator formalism, it is shown that the time evolution operator reads

U(t) = e−iHI t =
2∑

p,q=1

up,q(Np) X
p,q, (66)

with
up,q(Np) = ei

π
2
|p−q| cos

(
γtNp − π

2
|p− q|

)
. (67)

This operator is analogous to the time evolution operator given in Eq. (60). For instance, the
dynamics of two non-interacting atoms can be analyzed in terms of the unitary operator

U(t) = U1(t)⊗ U2(t) (68)

where U1(t) and U2(t) are expressed in X-operator notation [24]:

Ui =
2∑

p,q=1

up,q(Ni;p) X
p,q
4 , i = 1, 2. (69)

The operators Ni;p are equivalent to the ones defined in (65) for each mode of the field. By
virtue of (15), the time evolution operator of the whole system reads

U(t) =

4∑
p,q=1

up′,q′
(
Np′
)
up+2−2p′,q+2−2q′

(
Nq+2−2q′

)
Xp,q

4 . (70)

This last operator is useful in the study of the time evolution of entanglement since the reduced
atomic density matrix is straightforwardly computed in this framework [25,26]. To end up this
section we remark that our model could include an interaction like the Heisenberg Hamiltonian
(52). In such a case, the involved operators are compatible with the Hubbard representation.

5. Conclusions

The Kronecker product algebra has been revisited in terms of Hubbard operators. This
representation allows to reduce complicated calculations involving large matrices or a large
number of factors into simple relations of subscripts. In particular, we have shown that
the construction of permutation matrices and the construction of symmetrization operators
is straightforward in X-representation. Besides, the Hadamard matrix and its tensor powers are
nicely dealt in the Hubbard framework. On the other hand, we have analyzed the Hamiltonian
of the XXX Heisenberg model for two particles. The diagonalization of this Hamiltonian and
the calculation of the time evolution operator have been easily done in the X-representation.
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