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Abstract. We investigate whether the rho-meson melting scenario is compatible with chiral
symmetry restoration utilizing a comprehensive evaluation of the QCD and Weinberg sum
rules at finite temperature. As input to this analysis, in-medium vector spectral functions
which describe dilepton data from ultra-relativistic heavy-ion collisions are used along with
temperature dependent condensates from lattice calculations, when available, or approximated
by a hadron resonance gas. The combined deployment of QCD and Weinberg sum rules turns
out to be rather stringent in constructing axialvector spectral functions consistent with (partial)
chiral restoration.

1. Introduction
In the QCD vacuum, chiral symmetry is spontaneously broken by the presence of non-zero
quark condensates. Lattice-QCD calculations reveal that this symmetry becomes restored at
higher temperatures as the condensates progress through a pseudo-critical region around Tpc ≃
160MeV [1, 2]. A long standing problem in hadronic physics is identifying an experimental signal
for this transition. Ideally, this could be achieved by simultaneously measuring the medium
modifications of the spectral functions of chiral partners, e.g., vector (ρ) and axialvector (a1)
mesons; chiral restoration is then characterized by a degeneracy of the two channel’s spectral
functions. The vector channel has been extensively explored through dilepton spectra in ultra-
relativistic heavy-ion collisions [3, 4, 5]. Theoretical calculations from hadronic effective theory
using microscopic interactions [6] are consistent with the experimental data across a wide range
of collision energies. These studies reveal that the ρ-meson resonance “melts” without an
appreciable mass shift as the fireball cools through the pseudo-critical region [7]. Experimental
access to the axialvector channel (a1 → πγ) is difficult due to its small branching and large
width. Thus establishing this melting as a signal for chiral restoration remains outstanding. A
theoretical determination of the axialvector spectral function is therefore needed to provide the
necessary connection between the ρ melting and chiral symmetry.
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The direct approach would be to calculate the axialvector spectral function from effective
field theory paralleling the previous work for the ρ. However, this has proven challenging [8]
and has lead some to give up the natural implementation of the mesons as local gauge bosons
of the chiral symmetry [9, 10]. A recent study has been able to overcome these initial problems
while maintaining a local gauging procedure in vacuum [11]; work is ongoing to extend these
calculations to finite temperatures.

In this paper, based on Ref. [12], we take the more modest approach by performing a sum rule
analysis to ask whether the melting scenario is compatible with chiral restoration. By using the
experimentally tested in-medium ρ spectral functions and constraints from lattice data, we study
whether an axialvector spectral function can be found which satisfies the sum rules. For our
analysis, we use both the Weinberg sum rules (WSRs) [13, 14, 15], which are responsive to chiral
symmetry restoration, and QCD sum rules (QCDSRs) [16, 17], which involve additional chirally
invariant condensates, to provide “maximal” constraints on the in-medium axial-/vector spectral
functions. As a by-product, we test the QCDSRs for the vector channel. Similar works have
been performed, e.g., in the low-temperature limit [18, 19], for heavy-quark channels [23], or by
focusing on chirally odd condensates in the vector channel only [24]. A recent study [20] parallels
some of the philosophies of the current work by investigating whether finite energy WSRs can
be satisfied with axial-/vector spectral functions constrained by finite energy QCDSRs [21, 22].

The results presented here build upon our earlier study [25], where we quantitatively evaluated
the vacuum QCDSRs and WSRs using spectral functions that accurately describe hadronic τ -
decay data [26, 27]. There we found that the WSRs (predominately WSR-1 and -2) were
particularly selective in constraining the spectral functions: by requiring that they be satisfied
dictated the presence of an excited a′1 state beyond the kinematic limit of the τ -data. Such
selectivity makes the sum rules a promising tool in determining in-medium axialvector spectral
functions, so new insights into the mechanism of chiral symmetry restoration can be expected.

The proceeding is organized as follows. In Sec. 2, the in-medium QCDSRs and WSRs are
introduced. Section 3 describes the temperature dependence of the pertinent condensates, while
in Sec. 4, the axial-/vector spectral function are specified. The quantitative sum rule analysis
is presented in Sec. 5. We conclude in Sec. 6.

2. Finite Temperature Sum Rules
Sum rules equate dispersion integrals of spectral functions to a space-like expansion where the
non-perturbative coefficients are given by low energy condensates. For our purposes, the relevant
spectral functions are the isovector current-current correlator in the vector (V ) and axialvector
(A) channels,

Πµν
V,A(q

2) = −i

∫
d4x eixq

⟨
T J⃗µ

V,A(x)J⃗
ν
V,A(0)

⟩
, (1)

where the currents, in the basis of two light flavored quarks, are given by J⃗µ
V = q̄τ⃗ γµq and

J⃗µ
A = q̄τ⃗ γµγ5q, (τ⃗ : isospin Pauli matrices). Here, only the charge-neutral states (isospin

I3=0) are considered, thus isospin indices will be dropped. In vacuum, the correlator can be
decomposed as

Πµν
V,A(q

2) = ΠT
V,A(q

2)

(
−gµν +

qµqν

q2

)
+ΠL

V,A(q
2)
qµqν

q2
(2)

into the 4D-transverse and longitudinal polarizations. In the vector channel, ΠL
V (q

2)=0, due to
vector current conservation, while the partial conservation of the axial-current involves the pion
pole,

ImΠL
A(q

2) = −πf2
πq

2δ(q2 −m2
π) . (3)

At finite temperature, Lorentz symmetry is broken such that the 4D-transverse polarization is
further decomposed into 3D-transverse and -longitudinal parts. In this paper, we concentrate
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on the case of vanishing 3-momentum (q⃗=0) for which the 3D modes are again degenerate. We
define the pertinent spectral functions as

ρV,A = −
ImΠT

V,A

π
, ρĀ = ρA −

ImΠL
A

π
. (4)

For the finite temperature QCDSRs, the dispersion integral of these spectral functions
constitutes the left-hand side (LHS) of the sum rule, while the right-hand side (RHS) is
constructed from an operator product expansion (OPE). There is a unique sum rule for the
vector and axialvector channels given by [28, 29, 30]

1

M2

∫ ∞

0
ds

ρV,Ā(s)

s
e−s/M2

=
1

8π2

(
1 +

αs

π

)
+

mq⟨q̄q⟩
M4

+
1

24M4
⟨αs

π
G2

µν⟩

− παs

M6

(56,−88)

81
⟨OV,A

4 ⟩+
∑
h

⟨Od=4,τ=2
h ⟩T
M4

+
⟨Od=6,τ=2

h ⟩T
M6

+
⟨Od=6,τ=4

h ⟩T
M6

. . . ,

(5)

where the space-like q2 is traded for the Borel mass M2 by the standard Borel transform.
The OPE is comprised of all operators up to dimension-6, both chirally invariant and chiral
order parameters. This includes the conventional scalar operators (quark, gluon, and 4-quark

condensates, ⟨q̄q⟩,
⟨
αs
π G2

µν

⟩
, and ⟨OV,A

4 ⟩, respectively), as well as non-scalar operators induced
by thermal hadrons (h), organized by dimension (d) and twist (τ).

On the other hand, the dispersion integrals of the WSRs are associated with the difference
between the vector and axialvector spectral functions. As such, the corresponding OPEs are
expressed only in terms of chiral order parameters, while the different WSRs correspond to
different moments of the dispersion integrals. The finite temperature sum rules, first formulated
in Ref. [15], read

(WSR1)

∫ ∞

0
ds

∆ρ(s)

s
= f2

π , (6)

(WSR2)

∫ ∞

0
ds∆ρ(s) = f2

πm
2
π = −2mq⟨q̄q⟩ , (7)

(WSR3)

∫ ∞

0
dss∆ρ(s) = −2παs⟨OSB

4 ⟩ , (8)

where ∆ρ = ρV − ρA. The chiral breaking 4-quark condensate can be expressed in terms of the
axial-/vector ones as ⟨

OSB
4

⟩
=

16

9

(
7

18

⟨
OV

4

⟩
+

11

18

⟨
OA

4

⟩)
. (9)

The presence of only chiral order parameters renders the WSRs particularly sensitive to chiral
restoration, whereas the channel-specific QCDSRs provide independent constraints.

3. In-Medium Condensates
The in-medium behavior of each condensate can be estimated from a hadron resonance gas
(HRG) calculation. Here, we consider all resonances with mass mh≤ 2GeV [31]. Including only
the effects from single-hadron matrix elements for each operator, O, leads to

⟨O⟩T ≃ ⟨O⟩0 +
∑
h

dh

∫
d3k

(2π)3 2Eh

⟨h(k⃗)|O|h(k⃗)⟩nh(Eh) , (10)

where ⟨O⟩0 is its vacuum expectation value, ⟨h(k⃗)|O|h(k⃗)⟩ its hadronic matrix element,

E2
h=m2

h + k⃗2, and dh, mh, and nh are the hadron’s spin-isospin degeneracy, mass, and thermal
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Figure 1. Temperature dependence of: quark, gluon, and axial-/vector 4-quark condensates
relative to their vacuum values (left), and dimension-4 and dimension-6 non-scalar operators
relative to the vacuum values of the gluon and vector 4-quark condensates (right).
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Figure 2. Temperature dependence of the quark condensate relative to its vacuum value,
compared to thermal lQCD data [1].

distribution function (Bose (nb) or Fermi (nf )), respectively. We work at zero baryon chemical
potential (µB=0), so that anti-baryons can be absorbed into the degeneracy factor of baryons.

The HRG construction is known to reproduce the equation of state from lQCD quite well
for T ≤ 170MeV [32]. Importantly, it utilizes the same degrees of freedom as the in-medium
ρ spectral function calculation. The resulting T -dependence of the quark, gluon and 4-quark
condensates are depicted in Fig. 1 left, while the non-scalar operators are shown in Fig. 1 right.

The HRG correction to the quark condensate can be derived from the HRG partition function
via ∂ lnZ/∂mq [33, 34] and has the general structure

⟨q̄q⟩T
⟨q̄q⟩0

= 1−
∑
h

σh
f2
πm

2
π

ϱhs , (11)

where ϱhs is the scalar density of hadron, h, and σh = ⟨h|q̄q|h⟩ its σ-term. For the Goldstone
bosons, σh can be calculated from current algebra while for all other hadrons, it is decomposed
into a bare part (from the light valence quarks) [35] and a pion cloud contribution [36, 37].
Again, this decomposition parallels the medium effects of the ρ spectral function [38].

Our HRG calculation reproduces lQCD “data” [1] for T.140MeV well, see Fig. 2. To extend
this agreement, we introduced a term, αT 10. With α =1.597 ·107GeV−10, the quark condensate
vanishes slightly above T=170MeV. The power in T of this additional term was chosen as a
balance between not affecting the low T behavior while improving the description of the high-T
region of the data.

For the gluon condensate, the contributions from pions and nucleons have been evaluated
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in Refs. [28, 30, 39]. The HRG effect can be determined from the trace anomaly and the light
quark condensate. This produces a mild dependence on temperature as shown in Fig. 1 left.

For the 4-quark condensates, current algebra again dictates the Goldstone boson contribution
to the medium dependence [28]. For the non-Goldstone boson and the baryons, large Nc

arguments [34, 40] suggest that their contribution can be determined by a factorization
approximation which relates it to the quark condensate. We again augment the high-T
dependence by a term βV,AT

10. Since there is no guidance from lattice data, βV,A are adjusted
for each channel to force the condensates to vanish at the same temperature as the quark
condensate. This creates a dependence which is initially steeper than the quark condensate,
cf. Fig. 1 left. The T -dependence of the chiral breaking 4-quark condensate follows from the
axial-/vector ones via Eq. (9).

Hadrons in the heat bath also induce non-scalar condensates. For our QCDSR analysis
the relevant ones are of dimension-4 twist-2,

⟨
Od=4,τ=2

⟩
T
, dimension-6 twist-2,

⟨
Od=6,τ=2

⟩
T
,

and dimension-6 twist-4,
⟨
Od=6,τ=4

⟩
T
. Their T dependence, adopted from Refs. [28, 29, 30],

is constructed from thermal averaged powers of the momentum, with parameters related to
the light-quark parton distribution and the spin-averaged (longitudinal) structure functions
for each hadron [29, 41]. For hadrons with unmeasured functions, the parameters have been
approximated by using the value from either the pion or nucleon with a suppression due to
the valence strange-quark content. The contributions from gluonic structure functions are
believed to be numerically insignificant [28, 29] and have been neglected. To compare the
relative size of these contributions, the temperature dependence, shown in Fig. 1 right, is
plotted as a dimensionless ratio relative to the appropriate vacuum scalar condensate (gluon
for the dimension-4 operator and the vector 4-quark for the dimension-6 operator). For the
dimension-6 twist-2 operator, this ratio is negative, thus the absolute value is plotted for easier
comparison.

4. Finite Temperature Spectral Functions
The starting point of our study are the vacuum axial-/vector spectral functions of Ref. [12, 25].
They are constructed from three components: the ground state (ρ and a1 peaks), a first excited
state (ρ′ and a′1), and a chirally invariant (i.e., identical) continuum. The microscopic model of
Ref. [42] provides the vacuum ρ spectral function, while parameterized Breit-Wigner functions
are used to describe the a1, ρ

′ and a′1 resonances. The availability of experimentally measured
vacuum spectral functions from τ decays by ALEPH [26] allows the parameters of the a1 and ρ′

peaks to be determined by fitting these data. The a′1 contribution, on the other hand, is deduced
from the WSRs, by requiring them to be satisfied. The evaluation of the vacuum QCDSRs allows
for the numerical determination of the vacuum gluon condensate and the 4-quark factorization
parameter κ in

⟨
OSB

4

⟩
= 16

9 κ ⟨q̄q⟩
2. The resulting spectral functions are displayed in Fig. 3.

The changes of the condensates with temperature will induce modifications of the spectral
functions. These modifications are accounted for as follows. Most importantly, to ensure that
the results are consistent with dilepton data [7], the microscopic calculations for the ρ spectral
function from hadronic effective theory [6] at vanishing baryon chemical potential are used. The
only amendment we permit is a suppression of the vector-dominance coupling strength (as is
commonly done in QCDSR analyses [28, 30, 43, 44]).

For the a1 meson, we parameterize the medium modifications of its spectral function by
introducing four parameters (one for the mass, two for the width, and one for the axialvector-
dominance coupling strength), which control the in-medium a1 peak. These parameters will be
scanned at each temperature to determine whether the QCDSRs and WSRs can be satisfied.

A priori, the temperature dependence of the excited states is rather unconstrained. To
focus the sum rules analysis on the in-medium a1 peak, we apply the model independent low-
temperature effect known as chiral mixing [45, 46] to the ρ′ and a′1 states instead of introducing
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Figure 3. Vacuum spectral functions in the vector (left) and axialvector (right) channels,
compared to experimental data for hadronic τ decays [26]; The total spectral function in each
channel (solid curve) is composed of a ground state (dotted curve), excited state (dashed curve),
and a universal continuum (dot-dashed curve).

temperature dependencies to their Breit-Wigners parameters (which are hard to control). In
the spirit of the HRG, both thermal pions and virtual pions from the clouds of thermal hadrons
contribute to the mixing effects. Consistent with the condensates, this mixing is carried out
only to linear order in the (scalar) hadron densities. In cold nuclear matter, this effect has been
calculated for the pion cloud of the nucleon [47, 48]. As with the condensates, an additional T 10

term is added to the mixing whose coefficient is determined by requiring the excited resonances
become degenerate when the condensate vanishes. The addition of the virtual pions effectively
approximates the extension of the mixing beyond the low-T limit, yet it does not account for
finite-momentum nor finite-mass corrections from the (virtual) pions.

The chirally invariant continuum is assumed to be T independent
Lastly, the T dependence of fπ(T ) needs to be addressed. Using the Gell-Mann–Oakes–

Renner relation at finite T , we relate fπ(T ) to the already-constructed quark condensate and
the pion mass, whose T -dependence is approximated by the leading-order prediction from chiral
perturbation theory.

To summarize this section, a microscopic model for the ρ spectral function has been
supplemented with a 4-parameter ansatz for the in-medium a1, chiral mixing for the excited
states, and a weakly T -dependent pion mass from chiral perturbation theory. This setup is now
deployed to the QCDSRs and WSRs.

5. Finite-Temperature Sum Rule Analysis
In order to critically evaluate agreement with the sum rules, quantitative criteria are needed. For
the QCDSR, we calculate the so-called d-value, i.e., the average deviation between the LHS and
RHS over a suitable Borel window [43, 49]. determined by using the same criteria as the vacuum
analysis in Ref. [25]. From the analysis of Ref. [43], a d-value of 1% was found to encompass a
reasonable uncertainty in the spectral function; we adopt this as our figure of merit.

For the WSRs, we similarly define a deviation between each side as

dWSR =
LHS− RHS

RHS
. (12)

The integrands of the WSRs are oscillatory functions of s with non-trivial cancelations to yield
the integrated value. This can lead to “fine-tuned” solutions whereby the oscillations are still
large but conspire to an apparent agreement of the sum rule, with ρV (s) ̸= ρA(s) even close to
restoration. To avoid an artificially fine-tuned solution, we define “absolute-value” versions of
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Figure 4. Finite-temperature vector (black curve) and axialvector (red curve) spectral functions
following from minimizing Eq. (14) for the axialvector and dV for the vector.

the LHS are defined by

w̃n(T ) ≡
∫ ∞

0
ds sn |∆ρ(s;T )| . (13)

As the spectral functions become degenerate, these moments should decrease, even without a
direct relation to chiral order parameters, and thus not allow for oscillatory cancelations. We
further introduce pertinent ratios, rn = w̃n(T )/w̃n(T = 0).

Our analysis proceeds as follows. First the QCDSR is evaluated for the vector channel. With
a small reduction in the vector dominance coupling (up to a maximum of 7% at 170MeV),
acceptable dV values are found for all T=0-170MeV ranging from 0.43% to 0.67%. To satisfy
the axial QCDSR and the WSRs, the a1 parameters, with a smooth temperature dependence,
are found by minimizing the function

f = d2WSR1 + d2WSR2 + d2A . (14)

The resulting finite-T axialvector spectral functions are shown in Fig. 4 together with the vector
channel. In all cases, the deviations of WSR-1 and WSR-2 are below 0.1%, while dA remains
below 0.6%. Deviations of WSR-3 are much larger percentage-wise, but comparable to the
vacuum up to T≃150MeV. We find a monotonic decrease with T for each rn-measure suggesting
acceptable deviations even for WSR-3. We therefore conclude that our spectral functions are
compatible with both QCDSRs and WSRs.

To gauge the uncertainty and demonstrate the selectivity of the sum rules, we present in
Fig. 5 left ranges of possible axialvector spectral functions, at a fixed representative temperature
T=150MeV, with certain constraints removed. The largest band, bordered by dashed curves, is
the region spanned by requiring dA=1% for the axialvector QCDSR (the band could be larger
if all spectral functions with dA<1% were included). From this collection of spectral functions,
we then select those which simultaneously satisfy WSR-1 better than 1% and arrive at the blue
region bordered by dotted curves. This indicates that the axialvector QCDSRs alone cannot
adequately distinguish possible spectral functions. Whereby, the combination of the QCDSR
and WSRs markedly improves the selectivity of the in-medium axialvector spectral function.

An important aspect of our analysis is the systematic temperature evolution toward the
restoration point at which a “trivial” degeneracy occurs, being compatible with our best
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Figure 5. (Left panel): Allowed bands for the of axialvector spectral functions at T=150MeV
when requiring agreement with the QCDSR only at dA=1% (dashed lines), and additionally with
WSR-1 at |dWSR1|≤1% (dotted lines). The solid line corresponds to a minimal f value from
Eq. (14). (Right panel): Temperature dependence of the ρ and a1 mass and width extracted
from the spectral functions in Fig. 4.

estimates of the T dependent chiral order parameters and condensates. At T = 170MeV,
the condensates have the largest deviation from lattice data, and our solutions may be more
illustrative of a higher temperature where the quark condensate is closer to zero. From this
evolution, we can probe the temperature dependence of a1 parameters.

We finally display in Fig. 5 right the temperature dependence of the ρ and a1 mass and
width. Two fundamental characteristics of the QCD phase transition (deconfinement and chiral
restoration) are exemplified here. First, the mass and width for each individual state approach
each other: a sign of hadronic melting and deconfinement. Second, the two meson masses (and
widths) trend towards each other (also supported by a visual inspection of Fig. 4), signaling
chiral restoration. The ρ-a1 merging is largely dictated by the WSRs, but the concrete shape
close to chiral restoration is more sensitive to the QCDSRs. The approach toward degeneracy
at finite mass implies the chiral mass splitting to “burn off”, leaving an essentially persistent
“bare” masses of m0≃0.8GeV, similar to Refs. [8, 50, 51].

6. Conclusions
We have investigated implications of the ρ-melting scenario as a signal of chiral restoration in
hot and dense matter. To this end, we used in-medium vector spectral functions compatible with
experimental dilepton data to assess whether in-medium axialvector spectral functions could be
found to simultaneously satisfy the QCDSRs and WSRs. Additional input to the sum rules is the
temperature dependence of pertinent condensates which was obtained from a hadron-resonance
gas calculation and constrained by lattice-QCD calculations. We found agreement with the
vector QCDSR with a small adjustment of the vector meson dominance coupling. Additionally,
by introducing four in-medium spectral parameters for the a1, axialvector spectral functions
were deduced from a combined evaluation of QCDSR and WSRs over a temperature range from
0-170MeV. A key feature of the resulting axialvector spectral functions is an a1 mass shift
towards the ρ peak through a systematic progression in temperature toward chiral degeneracy.
Furthermore, the spectral melting of both ρ and a1 resonances is suggestive for deconfinement.
These insights should be subjected to further scrutiny utilizing more comprehensive microscopic
calculations of the in-medium axial-/vector spectral functions. Work in this direction is on-going.
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