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Abstract. A detailed comparison between two methods to calculate shear viscosity is
presented. We choose two systems in this comparison which are massless particles with current
algebra cross section and a mixture comprised of pions with rho resonances. The two methods
involved are the Green-Kubo method, applied using the Ultrarelativistic Quantum Molecular
Dynamics (UrQMD) model to simulate the hadronic medium, and the Chapmann-Enskog
method.

1. Introduction
Ultrarelativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are thought to
have created a Quark Gluon Plasma (QGP) with characteristics of an ideal fluid [2, 25]. As such,
the characterization of transport coefficients of hot, dense QCD matter is of significant interest.
In particular, much attention has been given to the shear and bulk viscosity coefficients η and
ζ, respectively, and the corresponding viscosity to entropy density ratios η/s, ζ/s. Although
an ideal fluid traditionally has been defined as having zero viscosities, semiclassical arguments
have been presented that suggest a lower limit to the shear viscosity to entropy density ratio
of a fluid [9], and there has been a conjecture by Kovtun, Son, and Starinets (KSS) based
upon a calculation using the AdS/CFT correspondence that η

s ≥ h̄
4πkB

, where h̄ is Planck’s
constant and kB is Boltzmann’s constant [21], and a modified bound of η

s ≥ 4h̄
25πkB

in order
to avoid acausalities in gravity duals [5]. Ideal hydrodynamics calculations assuming no shear
viscosity have been very successful in reproducing the elliptic flow (v2) data from RHIC, yet
the deconfined phase of the reaction cannot have zero shear viscosity. In the quest by the
RHIC community to determine the viscosity of the deconfined phase, several groups have
implemented viscous relativistic hydrodynamics simulations and examined what range of η/s
would be permissible to reproduce the RHIC v2 data [30, 15, 19]. Viscous hydrodynamical
analyses [23, 29] finds that η/s should lie within a range of 0.08-0.24 depending upon the choice
of initial conditions and equation of state. This finding is supported by lattice calculations of
η/s for pure gluonic QCD, which yield values close to the KSS bound, and indirect estimates of
η/s from calculations of the diffusion of heavy quarks, elliptic flow measurements, and transverse
momentum correlations that arrive at roughly comparable values [24, 22, 14, 17, 1]. However,
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the aforementioned viscous hydrodynamics calculations assume a fixed value of η/s throughout
the entire evolution of the reaction and hence neglect its temperature dependence. One should
note that the shear viscosity, especially in the context of a relativistic heavy ion collision, is a
time-dependent quantity. While the partonic phase of such a collision is expected to have a very
low value of η/s, after hadronization occurs η/s is expected to rapidly increase [12]. In order to
make precise quantitative statements about the viscosity of the deconfined phase of a relativistic
heavy ion collision, it is necessary to separately determine the viscosity of the hadronic phase
in order to quantitatively constrain the viscosity of the deconfined phase.

There have been a number of analytic calculations of η, ζ and the corresponding viscosity
to entropy density ratios for a number of different hadronic systems, including pure pion gases
([16, 13, 28, 7, 8]) and binary hadronic mixtures ([28, 6, 20]). In the aforementioned analytical
calculations, the linearized Boltzmann equation was solved, and the cross sections in the collision
integral were treated using a variety of methods, such as chiral perturbation theory, effective NN
theory, and phenomenological amplitudes [7, 6, 20]. Another analytical treatment used was the
relaxation time approximation [16, 28]. There also exist numerical calculations of shear viscosity
using semiclassical microscopic transport approaches of mesonic matter [26], hadronic matter at
finite baryon number density [27], and for a gas of hard spheres in the van der Waals excluded
volume hadron-resonance gas model [18]. However, while several calculations for the hadronic
shear viscosity exist, in order to validate a method and test the limits to which a calculation can
be reliable, it is necessary to perform a systematic comparison between two different methods
and see where the differences exist [32] , and that is the goal of this paper.

In this paper we compare two methods of shear viscosity calculations which are the
Chapmann-Enskogg approximation and the Green-Kubo Method. We chose the following two
systems for the comparison: (i) massless pions with an energy-dependent current algebra cross
section (ii) massive pions with both elastic scattering and inelastic scattering enabled through
the rho resonance as an intermediate channel. In this work, we want to observe the origin of
the difference in the result of shear viscosity calculations.

The organization of this paper is as follows. In Sec. II, the formalism and working formulae
of the Chapman- Enskog and Green-Kubo methods are summarized. In Sec. III, the results of
the calculations of both methods and their comparisons are given, and a summary is given in
Sec. IV.

2. Formalism
In the section, we will elaborate the working expression for the shear viscosity calculations from
both methods. It must be stressed that the formalisms used in this work are not new, but the
application of these formalisms to test cases is new to the extent that a detailed comparison
between two commonly used methods is provided. For the sake of clarity and completeness, the
formalisms used in this work are summarized below, along with working formulae.

2.1. Calculating Shear Viscosity: The Chapmann Enskogg Method
In this approximation, the system, which is slightly disturbed from its equilibrium, will have a
perturbed distribution function which can be expressed in term of hydrodynamic variables [11].
The perturbed distribution function contains all the information of the system including the
information about the transport coefficients (e.g. shear & bulk viscosities). By means of kinetic
theory, we can extract shear & bulk viscosities of the system.

For a single component gas, the first approximation to the shear viscosity takes the form of
[32]

η =
1
10
kBT

γ2
0

c00
, (1)
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where γ0 = −10 ĥ, ĥ = K3(z)/K2(z) and z = mc2/kBT is called the relativity parameter. The
term c00 contains the interaction in the system which is defined as

c00 = 16
(
w

(2)
2 − 1

z
w

(2)
1 +

1
3 z2

w
(2)
0

)
. (2)

The quantity w(s)
i is so called the relativistic omega integral given by

w
(s)
i =

2πz3c

K2(z)2

∫
dψ sinh7 ψ coshi ψKj(2z coshψ)×

∫ π

0
dΘ sin Θσ(ψ,Θ) (1− coss Θ) , (3)

where j = 5/2− 1/2(−1)i, sinhψ = g/mc and coshψ = P/2mc. The quantities g and P are the
relative and center of mass momenta. The interaction in the system is hidden in the differential
cross section, σ(ψ,Θ).

2.2. Calculating Shear Viscosity: The Green Kubo Method
The second method which we use to calculate the shear viscosity coefficient is the Green-Kubo
method. In the Green-Kubo method, linear transport coefficients are cast in terms of the time
integral of some sort of a correlation between fluctuations near equilibrium. For the case of the
shear viscosity coefficient the formula is

η =
1
T

∫
d3rdt〈πxy (0)πxy (t)〉. (4)

The brackets refer to taking an average over the ensemble of events generated in the simulation.
The

2.3. Equilibriation of Infinite Hadronic Matter
Our hadronic medium is simulated using UrQMD, which is a covariant microscopic transport
model based upon the Boltzmann equation

(
∂

∂t
+ ~v · ∇r

)
f (1) = Φcoll, (5)

where f (1) is the one-particle phase-space distribution function for a given species, and Φcoll

is the collision integral. UrQMD is composed of purely hadronic degrees of freedom, and does
not contain information about any possible crossover or phase transition into partonic degrees
of freedom. Interactions in our simulation are based only upon scattering, and we neglect
any interparticle potential. The criterion for a collision to occur is based upon the geometric
interpretation of the cross section:

dmin ≤
√
σtot

π
, (6)

where dmin is the transverse distance at closest approach between two particles. UrQMD is
described in great detail in [3]. Our version of UrQMD includes 55 baryon and baryon resonance
species and 32 meson and meson resonance species, (and their antiparticles). These species
include strange particles, but no particles containing heavy quarks (c or b quarks).

In order to use the Kubo formalism to extract the shear viscosity coefficient, it is necessary
to establish that our system reaches a state of thermal equilibrium. To force our system into
equilibrium, we confine our hadronic medium to a cubic box with periodic boundary conditions
in real space. This technique was also used in [4, 26, 27]. The input parameters of our system
are as follows: volume of the box, initial particle species, along with their chemical potentials.
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Figure 1. Momentum distributions in the x, y, and z directions, indicating the momentum
distribution is indeed isotropic.

We initialize our systems to be in thermal and chemical equilibrium. For the test case involving
a gas of massless pions with energy dependent cross sections, the initial yields corresponding
to a given temperature and chemical potential are calculated using the Boltzmann distribution
function. For the test case involving a pion rho mixture, the initial particle yields are calculated
using the Statistical Hadronization with Resonances (SHARE) model [31], with the resonance
and decay tables modified to represent the degrees of freedom of the system.

2.4. Thermal and Kinetic Equilibriation
As mentioned above, in order to apply the Green-Kubo method to calculate the shear viscosity
coefficient, it is necessary to establish that kinetic equilibrium has been achieved. A system which
has attained thermal equilibrium should have its momenta distributions following a Boltzmann
distribution:

d3Ni

d3p
∝ exp

(
−Ei

T

)
(7)

for a given species Ni. We know that for a system realizing kinetic equilibrium, the momenta
distributions should be isotropic, enabling us to write d3p = 4πp2dp, where p is the three-
momentum magnitude. Using the relativistic dispersion relation Ei =

√
p2

i +m2
i enables us to

use the alternate observable 1
pE

dNi
dE . Figure 1 shows the momenta distribution in the x, y, and

z directions evaluated at chemical equilibriation time for the case for a chemically weighted (by
the pion/rho densities) temperature of T = 126 MeV for a πρ mixture. Figure 2 shows the
observable 1

pE
dN
dE versus E for the same case.
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Figure 2. The observable 1/pEdN/dE as a function of energy. Both the pions and rhos fit to
a Boltzmann distribution. The pion temperature is 125 MeV whereas the rho temperature is
129 MeV.

2.5. Shear Viscosity
Computing the shear viscosity for our system amounts to finding the time integral of the
correlations of the shear component of the energy-momentum tensor about the equilibrium
state. The energy-momentum tensor is related to the phase-space density of the system through
the following equation

πµν =
∫
d3p

pµpν

p0
f(x, p). (8)

The phase space density for a system of particles uniformly distributed in phase space is
given by

f(x, p) =
1
V

N∑

j=1

δ(~p− ~pj). (9)

This enables one to calculate pixy directly

πxy =
1
V

N∑

j=1

px(j)py(j)
p0(j)

. (10)

Note that since we assumed the particles were uniformly distributed in real space, the Green-
Kubo formula for the shear viscosity coefficient becomes

η =
V

T

∫
dt〈πxy(0)πxy(t)〉. (11)
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Figure 3. The momentum correlation function as a function of time t. The relaxation time for
this case is τπ = 3.1 fm/c.

In order to simplify evaluating this integral, we assume the correlation function 〈πxy (0)πxy (t)〉
has an exponential ansatz:

〈πxy (0)πxy (t)〉 ∝ exp

(
− t

τπ

)
(12)

A representative sample of this correlation function is shown in Figure 3. The figure suggests
that our assumption is reasonable. This ansatz has also been used in [26]. If we assume the
exponential dependence of the stress tensor correlation function on post-equilibriation time t,
the Kubo formula reduces to

η =
V

T
τπ〈πxy (0)2〉. (13)

The volume V of the system is an input parameter, the temperature T is extracted from
fitting momenta distributions to a Boltzmann distribution after checking that the momenta
distributions in the system are isotropic, the correlator relaxation time tauπ is obtained from
fitting the momentum correlation function to an exponential, and 〈πxy (0)2〉 is obtained from
the intercept of the momentum correlation function. Hence, the shear viscosity coefficient can
be calculated in this way, and in the next section we present the results of the shear viscosity
coefficient for two systems.

3. Results
In this section we present the results for the calculation of the shear viscosity via both the
Chapmann-Enskog and Green-Kubo method for two systems. The first system involves a
pure chiral pion gas with an energy dependent cross section given by current algebra. The
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Figure 4. Shear viscosity coefficient as a function of temperature for an gas of chiral pions with
energy dependent cross section.

second system is a πρ mixture, where massive pions scatter elastically and inelastically via an
intermediate ρ resonance state. More details are given below.

3.1. Massless Pions with Energy Dependent Cross Section (with Current Algebra)
The total (energy-dependent) cross section for the first system is given by

σ
(√
s
)

=
5s

72πf4
π

, (14)

where s is the Mandelstam variable representing the total energy in the center of mass frame
and fπ = 93 MeV is the pion decay constant. The results for the shear viscosity coefficient are
shown as a function of temperature in Figure 4, and we find that there is very good agreement
between the calculations from the Green-Kubo method and the Chapmann-Enskog method.

3.2. Pion Rho Mixture
The πρ mixture involves the two following processes:

• (a) σππ→ππ,elastic = 17.778 mb.
• (b) ππ → ρ→ ππ (inelastic)

The value of the cross section in (a) is based upon the additive quark model, which dictates that
meson-meson and baryon-baryon cross sections are related via

σMM =
(

2
3

)2

σBB, (15)
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Figure 5. Shear viscosity coefficient versus temperature for a gas of massive pions scattering
elastically and inelastically through an intermediate rho resonance.

where M/B stands for meson/baryon, respectively. Since the elastic nucleon-nucleon cross
section is known to be approximately 40 mb, this implies that σππ,elastic = 17.778 mb.

The results for the shear viscosity coefficient are shown as a function of temperature in Figure
5. We find that, although there is good agreement between the Green-Kubo and Chapmann-
Enskog methods in the temperature range 100 < T < 150) MeV, the results from the Green-
Kubo calculation are systematically higher than those for the Chapmann-Enskog method in the
temperature range 150 < T < 200 MeV. This is a noteworthy result, particularly when one
realizes that many more inelastic scattering events through the intermediate resonance channel
are expected in the temperature range T > 150 MeV than T < 150 MeV. In order to fully
understand why the Green-Kubo method yields a higher result for the shear viscosity than the
Chapmann-Eskog method does, it is necessary to understand the effect of resonance lifetimes in
UrQMD on the shear viscosity coefficient. This is a subtle effect and the effect of timescales on
transport coefficients in general has been investigated in the past [10]. One of the goals of this
paper is to highlight the differences in the calculation of the shear viscosity of the Chapmann-
Enskog method versus the Green-Kubo method, and we find that the greatest difference is
observed when one examines the results for the shear viscosity coefficient in the temperature
range 150 < T < 200 MeV, where a large number of inelastic scattering events are expected
to take place. An investigation of the effect of the resonance lifetime on the shear viscosity
coefficient of the system is in progress.

4. Summary
In this section, we summarize the results from both methods to calculate the shear viscosity
for two different systems. The systems analyzed included a system of a pure gas of massless
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pions interacting via an energy-dependent cross section obtained via chiral current algebra,
and a system of massive pions interacting elastically via a constant cross section given by the
AQM model, with inelastic scattering enabled through an intermediate ρ resonance channel.
The two methods used to calculate the shear viscosity were the Chapmann-Enskog method
and the Green-Kubo method using the UrQMD model to simulate the hadronic medium in
equilibrium. When the results of the calculation for the two different methods were compared,
excellent agreement was found between the Chapmann Enskog and Green Kubo methods for
the system of pure massless pions with an energy dependent cross section, whereas a systematic
deviation occured between the Chapmann Enskog and Green Kubo methods in the temperature
range 150 < T < 200 MeV, where significant inelastic scattering is expected to occur. The
Green-Kubo method systematically yielded a higher result in this temperature range. To fully
understand the reason for this, a systematic investigation of the effect of resonance lifetimes on
the shear viscosity needs to be performed, and this is in progress. We also plan to extend this
comparison to other test systems.
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