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Abstract. The exact solution of the BCS pairing Hamiltonian dates back to the work of
Richardson in 1963. Little attention was paid to this exactly solvable model for almost 40
years. However, at the beginning of the 21th century, there was a burst of work focusing
on its applications in different areas of quantum physics. In this contribution we introduce
the generalized integrable Richardson-Gaudin models, and discuss a recent application of the
hyperbolic model to heavy nuclei.

1. Introduction
After a long struggle to explain from a microscopic description the phenomenon of
superconductivity, Bardeen, Cooper and Schrieffer published in 1957 [1] a successful theory for
treating variationally a pairing Hamiltonian. The BCS theory was able to explain quantitatively
most of the superconducting properties from the associated BCS wave function, leading to
complete microscopic explanation of superconductivity.

The success of the BCS theory quickly spread to other quantum many-body systems,
including the atomic nucleus. Soon thereafter Bohr, Mottelson and Pines published a paper
[2] suggesting that the gaps observed in even-even nuclei could be due to superconducting
correlations. They noted, however, that these effects should be strongly influenced by the finite
size of the nucleus. Since then, and up to the present, number projection and in general symmetry
restoration in the BCS and Hartree-Fock-Bogoliubov approximations have been important issues
in nuclear structure.

At the beginning of the sixties, while several groups were developing numerical techniques for
number-projected BCS calculations [3, 4], Richardson provided an exact solution for the reduced
BCS Hamiltonian [5, 6]. In spite of the importance of his exact solution, this work did not have
much impact in nuclear physics with just a few exceptions. Later on, his exact solution was
rediscovered in the framework of ultrasmall superconducting grains [7] where BCS and number-
projected BCS were unable to describe appropriately the crossover from superconductivity to a
normal metal as a function of the grain size. Since then, there has been a flurry of work extending
the Richardson exact solution to families of exactly-solvable models, now called the Richardson-
Gaudin (RG) models [8, 9], and applying these models to different areas of quantum many-body
physics including mesoscopic systems, condensed matter, quantum optics, cold atomic gases,
quantum dots and nuclear structure [10]. In this contibution, we introduce the generalized RG
integrable models and a recent application to nuclear physics.
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2. Richardson-Gaudin integrable models
The fully integrable and exactly solvable RG models are based on the SU(2) algebra. We first
introduce the generators of SU(2), using a basis familiar to nuclear structure,

K0
j =

1

2

(∑
m

a†jmajm − Ωj

)
, K+

j =
∑
m

a†jma†jm, K−
j = (K+

j )†. (1)

Here a†jm creates a fermion in single-particle state jm, jm denotes the time reverse of jm,

and Ωj = j + 1
2 is the pair degeneracy of orbit j. These operators fulfill the SU(2) algebra

[K+
j ,K−

j′ ] = 2δjj′K
0
j , [K

0
j ,K

±
j′ ] = ±δjj′K

±
j .

We now consider a general set of L Hermitian and number-conserving operators that can be
built up from the generators of SU(2) with linear and quadratic terms,

Ri = K0
i + 2g

∑
j( ̸=i)

[
Xij

2

(
K+

i K−
j +K−

i K+
j

)
+ YijK

0
i K

0
j

]
. (2)

Following Gaudin[11], we then look for the conditions that the matrices X and Y must satisfy
in order that the R operators commute with one another. It turns out that there are essentially
two families of solutions, referred to as the rational and hyperbolic families, respectively.

i. The rational family

Xij = Yij =
1

ηi − ηj
(3)

ii. The hyberbolic family

Xij = 2

√
ηiηj

ηi − ηj
, Yij =

ηi + ηj
ηi − ηj

(4)

Here the set of L parameters ηi are free real numbers.
The reduced BCS Hamiltonian with a constant pairing interaction is an example of the

rational family. It can be obtained as a linear combination of the integrals of motion,
HP =

∑
j εjRj(ηj), with ηj = εj .

The complete set of eigenstates of the rational and hiperbolic integrals of motion can be
found in Ref. [8, 9, 10].

The key point of the RG models is that any Hamiltonian that can be expressed as a linear
combination of the R operators can be treated exactly using this method. The most general
exactly solvable Hamiltonian has 2L + 1 free parameters: a set of L internal parameters ηi, a
set of L free coefficients εi defining the linear combination of integrals of motion, and the paring
strength g. As a result, the RG Hamiltonians have an enormous flexibility to model physical
situations.

3. The hyperbolic model
The rational model was extensively used to model different mesoscopic systems like
superconductiong grains [12], cold atoms [13], quantum dots [14], nuclei [15], etc. The hyperbolic
family of models did not find a physical realization until very recently when it was shown that
they could model a p-wave pairing Hamiltonian in a 2-dimensional lattice [16], such that it was
possible to study with the exact solution an exotic phase diagram having a non-trivial topological
phase and a third-order quantum phase transition [17]. A slightly modified version of the p-wave
pairing Hamiltonian gives rise to a separable pairing Hamiltonian with 2 extra free parameters
that can be adjusted to reproduce the properties of heavy nuclei as described by a Gogny
HFB treatment [18]. Both applications are based on a simple linear combination of hyperbolic
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Figure 1. Gaps ∆i and pairing tensor uivi for protons in
154Sm. Open circles are Gogny HFB

results in MeV . Solid lines are BCS results of the hyperbolic Hamiltonian in MeV .

integrals of motion. In the nuclear application the exactly solvable pairing Hamiltonian reduces
to

H =
∑
i

εi

(
c†ici + c†

i
ci

)
− 2G

∑
ii′

√
(α− εi) (α− εi′) c

†
ic

†
i
c
i
′ci′ , (5)

where the free parameter α plays the role of an energy cutoff and εi is the single-particle
energy of level i. The complete set of eigenvalues are E = 2αM +

∑
i εiνi +

∑
β Eβ. Where the

pair energies Eβ correspond to a particular solution of the set of non-linear Richardson equations

1

2

∑
i

1

ηi − Eβ
−
∑

β′( ̸=β)

1

Eβ′ − Eβ
=

Q

Eβ
, (6)

with Q = 1
2G − L

2 +M − 1. Each particular solution of Eq. (6) defines a unique eigenstate.
Due to the separable character of the hyperbolic Hamiltonian, in BCS approximation

the gaps ∆i = 2G
√
α− εi

∑
i′
√
α− εi′ui′vi′ = ∆

√
α− εi and the pairing tensor uivi =

∆
√
α−εi

2
√

(εi−µ)2+(α−εi)∆2
have a very restricted form. In order to test the validity of the exactly

solvable Hamiltonian (5) we take the single-particle energies εi from the HF energies of a Gogny
HFB calculation and we fit the parameters α and G to the gaps and pairing tensor in the HF
basis. Figure 1 shows the comparison for protons in 154Sm between the Gogny HFB results in
the HF basis and the BCS approximation of the hyperbolic model. As it can be seen, there
is a remarkable agreement between the Gogny force and the hyperbolic Hamiltonian for the
pairing tensor. The Gogny gaps exhibit large fluctuations due to the details of the two-body
Gogny force. However, the general trend of the gaps is very well described by the square root√
α− εi of the hyperbolic model. From these results we extracted the values α = 32.7 MeV

and G = 2.24×10−3MeV . The valence space determined by the cutoff α corresponds to L = 91

XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013) IOP Publishing
Journal of Physics: Conference Series 533 (2014) 012057 doi:10.1088/1742-6596/533/1/012057

3



levels with M = 31 proton pairs. The size of the Hamiltonian matrix in this space is 1.98×1024,
well beyond the limits of exact diagonalization. However, the integrability of the hyperbolic
model provides an exact solution by solving a set of 31 non-linear coupled equations. Moreover,
the exact solution shows a gain in correlation of ∼ 2 MeV suggesting the importance of taking
into account correlations beyond mean-field.

4. Conclusions
The key feature of the RG integrable models, is that they transform the diagonalization of the
hamiltonian matrix, whose dimension grows exponentially with the size of the system, to the
solution of a set of M coupled non-linear equations where M is the number of pairs. This makes
it possible to treat problems that could otherwise not be treated and in doing so to obtain
information that is otherwise inaccessible. The exactly solvable RG Hamiltonians also provide
excellent benchmarks for testing approximations beyond HFB in realistic situations. Moreover,
the RG integrable models have been extended to larger rank algebra making possible the exact
solution of a proton-neutron pairing Hamiltonian with isospin T = 1 [19] or T = 0 and T = 1
[20].
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