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Negative parity states in the IVBM
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Abstract. The low-lying spectra including the first few excited positive and negative parity
bands of some heavy even-even nuclei from the rare earth and actinide mass regions are
investigated within the framework of the symplectic Interacting Vector Boson Model with
Sp(12, R) dynamical symmetry group. Symplectic dynamical symmetries allow the change of
the number of excitation quanta or phonons building the collective states providing for larger
representation spaces and richer subalgebraic structures to incorporate more complex nuclear
spectra. The theoretical predictions for the energy levels and transition probabilities between the
collective states are compared with experiment and some other collective models incorporating
octupole degrees of freedom.

1. Introduction

It is well known [1],[2] that in some mass regions several bands of negative parity are observed
in the low-lying nuclear spectra, like K™ = 07, 17 and 2~ bands. The most well-studied of
them is the K™ = 0~ band, usually interpreted as an octupole vibrational band, connected to
the ground state band (GSB) by enhanced E1 transitions.

Negative parity states have been described within different approaches mainly by inclusion
of octupole or/and dipole degrees of freedom. The bands of negative parity states are often
associated with the reflection asymmetry in the intrinsic frame of reference. In the geometrical
approach this is achieved by including the agy = B3 deformation [3]. In the Interacting Boson
Model (IBM) the description of negative states requires the introduction of p or/and f bosons
with negative parity in addition to the standard s and d bosons (spdf-IBM) [4],[5]. An alternative
interpretation of the low-lying negative parity states has been provided in different cluster
models [6]-[7] in which the dipole degrees of freedom are related with the relative motion of the
clusters. Based on the Bohr Hamiltonian different critical point symmetries (CPS) including
quadrupole and octupole deformations have been proposed [8]-[10], [11] extending the concept
of CPS introduced for the description of positive parity states.

In the present paper we give a unified description of the first few excited low-lying positive and
negative parity bands in the even-even nuclei from the the rare earth and actinide mass regions
within the framework of the symplectic Interacting Vector Boson Model (IVBM) with Sp(12, R)
dynamical symmetry group [12]. It is shown that the negative parity bands arise along with
the positive bands (ground state, 5 and ) without the introduction of any additional collective
degrees of freedom.

2. The IVBM
It was suggested by Bargmann and Moshinsky [13] that two types of bosons are needed
for the description of nuclear dynamics. It was shown there that the consideration of
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only two-body system consisting of two different interacting vector particles will suffice to
give a complete description of N three-dimensional oscillators with a quadrupole-quadrupole
interaction. The latter can be considered as the underlying basis in the algebraic construction
of the phenomenological IVBM [12].

The algebraic structure of the IVBM is realized in terms of creation and annihilation operators
of two kinds of vector bosons u),(a), um(a) (m = 0,=1), which differ in an additional quantum
number o = £1/2 (or @ = p and n)—the projection of the T'—spin (an analogue to the F'—spin
of IBM-2 or the I—spin of the particle-hole IBM). All bilinear combinations of the creation and
annihilation operators of the two vector bosons generate the boson representations of the non-
compact symplectic group Sp(12, R). Its irreducible representations are infinite dimensional.

We consider the following chain [12],[14]

Sp(12,R) D U(6) > SU3) ® U(2) > SOB)@U(L),
[Nlg (A p) <= (N,T) K L To (1)

where below the different subgroups the quantum numbers characterizing their irreducible
representations are given. We note that within the symmetric irreducible representation [N]g of
U(6) the groups SU(3) and U(2) are mutually complementary [15], i.e. the quantum numbers
of the two groups are related: N = A+ 2u and T' = A\/2. Making use of the latter we can write
the basis as

| [N]e; (A, p); K, Ly To) =| (N, T); K, L; Tp) (2)

The basis states associated with the even irreducible representation of the Sp(12, R)
can be constructed by the application of powers of raising generators Fﬁ(a, g) =
kaClLk]\fmu;(a)u%(ﬂ) of the same group on the vacuum. Each raising operator will increase
the number of bosons N by two. The resulting infinite set of basis states so obtained is denoted
as (2) and is shown in Table 1.

Table 1. Classification of the basis states.

N [T [To---[-3]-2 |-1 0 1 |2 | 3]
0 [0 (0,0)
2 |1 [ (2,0) | (2,0) | (2,0) |

0 (0,1)

2 | (4,0) [ (4,0) | (4,0) | (4,0) [ (4,0) |
4 |1 2,0 21)](21)

0 (0,2)

| | I : | | |

We use the following Hamiltonian [14]:
H = aN +bN? + a3T? + B3L? + oy T§ (3)

expressed in terms of the first and second order invariant operators of the different subgroups in
the chain (1). It is obviously diagonal in the basis (2) and its eigenvalues are just the energies
of the nuclear system:

E(N,L,T,Tp) = aN +bN? + a3T(T + 1) + B3L(L + 1) + a  T¢. (4)
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3. Application

In our application, the most important point is the identification of the experimentally observed
states with a certain subset of the basis states (2). In this regard, the following two points are of
importance. As we noted, the irreducible representations of Sp(12, R) are infinite dimensional.
Then the natural question arises -how to select a certain subset of the basis states given in Table
17 It turns out that an appropriate set of states is given by the so called ”stretched states” [16],
which are defined as the SU(3) states of the type (A, i) = (Ao, o+k), where k = 0,2,4,.... The
latter represent dominant SU (3) multiplets in the low-lying collective states. In the symplectic
IVBM the change of the number k, which is related in the applications to the angular momentum
L of the states, gives rise to the collective bands. The second point concerns the parity of the
state. We assume that the one type of two vector bosons, say p-boson, transforms under space
reflections as a pseudovector, while the other - n-boson - transforms as a vector. So, we define the
parity of the considered collective state as m = (—1)V» which generalizes our previous definition
of the parity 7 = (—1)7 given in Ref.[14]. This allows us to describe both positive and negative
parity states in the IVBM on the same footing without introducing of any additional collective
degrees of freedom.

We consider the first few excited low-lying positive (ground state, (, <) and negative
(K™= 0", 17) parity bands. We take two examples for which there is enough experimental data
on E1 transitions. In Fig.1(a) we compare our theoretical predictions for the excitation energies
in 125m with experiment [1] and the results obtained by the diagonalization of the spdf-IBM
Hamiltonian [17]. This nucleus in the positive parity part of the spectrum is considered as an
example of X (5) CPS [18]. The results obtained by the CPS approach [10] are also shown in
Fig.1(a). The next example is 226 Ra considered in the literature as possessing a stable octupole
shape. In Fig.1(b) we compare the results obtained by us in the IVBM and the pure SU(3)
dynamical limit of the spdf-IBM for this nucleus with experiment [19]. Calculations in the
SU(3) limit of spdf-IBM are performed using the Hamiltonian and matrix elements given in
[21]. For comparison, the predictions of the diagonalized spdf-IBM Hamiltonian [20] and CPS
approach [9] are also shown. One sees that the IVBM describes reasonably well the low-lying
excitation energies of the two nuclei under consideration. Note that in the case of 226 Ra, the
experimental data show large deviations from the rotational L(L + 1) rule (SU(3) limit of the
spdf-IBM) for both the ground state and K™ = 0~ bands despite the fact that R,/, = 3.13.
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Figure 1. (Color online) Comparison of the theoretical energies for the first few low-lying
positive and negative parity bands in »2Sm and 226 Ra with experiment and some other collective
models incorporating octupole degrees of freedom.

It is well known that the transition probabilities are more sensitive test for each model.
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Negative parity states of the K™ = 0~ band are characterized by the enhanced F1 transitions
to the GSB. Thus, we consider only the E1 transitions characteristic for the octupole/dipole
collectivity. In Fig.2 we compare our theoretical results for the matrix elements of the interband
E1 transitions between the states of the GSB and K™ = 0~ band in ??°Ra and "®Nd with
experiment [19], [1] and some other collective models. We see that IVBM describes well the
experimental data.
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Figure 2. (Color online) Theoretical and experimental values for the matrix elements of the
interband E1 transitions between the states of the GSB and K™ = 0~ band in ?*Ra and
148 N'd. For comparison, the theoretical predictions of some other collective models incorporating
octupole degrees of freedom are also shown.

4. Conclusions

In the present work the low-lying spectra including the first few excited positive and negative
parity bands of some heavy even-even nuclei from the rare earth and actinide mass regions are
investigated within the framework of the symplectic IVBM with Sp(12, R) dynamical symmetry
group. Symplectic dynamical symmetries allow the change of the number of excitation quanta
or phonons building the collective states providing for larger representation spaces and richer
subalgebraic structures to incorporate more complex nuclear spectra. The theoretical predictions
for the energy levels and matrix elements of the E'1 transitions between the states of the GSB and
K™ = 0~ band are compared with experiment and some other collective models incorporating
octupole degrees of freedom. The IVBM describes well the experimental data. The results
obtained for the energy levels and the E'1 transitions of the considered nuclei prove the correct
mapping of the basis states to the experimentally observed ones and reveal the relevance of the
used dynamical symmetry of the IVBM in the description of negative parity states.
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