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1. Introduction and summary
This survey of several recent papers [15, 17, 18, 20, 21] and [19], the latter can also be read in
my preprint [arXiv:1301.0081], is dedicated to a deep analogy between the notions of complexity
in theoretical computer science and energy in physics. The analogy is not metaphorical: we
describe several precise mathematical contexts, suggested recently, in which mathematics related
to (un)computability is inspired by (and to a degree reproduces) formalisms of statistical physics
and quantum field theory.

Namely, after recalling basics of the classical computability theory in Sec. 2, we turn to three
main subjects:

a) The problem of (un)computability of the asymptotic bound for error-correcting codes over a
fixed finite alphabet (Sec. 3).

Here M. Marcolli and the author have shown in [21] based upon [15] that the asymptotic
bound arises as a phase transition curve between different thermodynamic phases. The
relevant partition function is a sum over the ensemble of all codes in which the role of
energy is played by the Kolmogorov complexity of the code.
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b) The problem of mathematical foundation for the empirical Zipf ’s law (describing e.g. the
frequency distributions of words in natural languages).

It was suggested that this distribution reflects minimization of certain “effort”. I show
that (in certain contexts) if this effort is defined as complexity, Zipf’s law emerges from
L. Levin’s a priori distributions, mathematical theory of which was founded in the 1970’s:
see Sec. 4 and more detailed argumentation in [20].

c) The problem of uncomputable in the computability theory (Sec. 5-7).

It is well-known that the theory of computability unavoidably leads to effects of
uncomputability in its own realm: basically, it may be impossible to decide in finite time whether
a partial recursive function is defined at a given point.

I draw an analogy between this and problems of infinities in perturbative Quantum Field
Theory (QFT). Moreover, I suggest that renormalization schemes from QFT involving first
a deformation of the problem and then “subtraction of infinities” can be fruitfully applied
in computation theory. This procedure as well involves Kolmogorov complexity. The basic
common elements of the two formalisms are graphs appearing as Feynman diagrams in QFT
and as flowcharts in computation theory. For more details and related results cf [17, 18, 16].

There are no proofs in this report: we focus on the presentation of basic ideas. The paper
is a survey based upon the talk at the satellite QQQ conference to ECM6, 3Quantum: Algebra
Geometry Information, Tallinn, July 2012.

2. A brief guide to computability: operadic and categorical perspective
Any single approach to mathematical notion of computability - Turing’s machines, Church’s
lambda calculus, Markov’s algorithms - by necessity bypasses rich intuitions governing other
approaches. But since this is unavoidable, and since our goal here is to pave the shortest way
to Kolmogorov’s complexity, for us computability theory here will be based on the theory of
(partial) recursive functions.

2.1. Three descriptions of partial recursive functions
A “function”, say, f : X → Y , below always means a pair (f,D(f)), where D(f) ⊂ X and
f : D(f)→ Y a set-theoretic map. The definition domain is not always mentioned explicitly. If
D(f) = X, the function might be called “total”; generally it may be called “partial” one. The
other extremal case is that of “empty function”, with D(f) = ∅. We put Z+ := {1, 2, 3, . . . }.

(i) Intuitive description. A function f : Zm+ → Zn+ is (partial) recursive iff it is “semi-
computable” in the following sense: there exists an algorithm F accepting as inputs vectors
x = (x1, . . . , xm) ∈ Z+ with the following properties:

– if x ∈ D(f), F produces as output f(x).
– if x /∈ D(f), F either produces the output “NO”, or works indefinitely long without

producing any output.

(ii) Formal description (sketch). It starts with two lists:

– An explicit list of “obviously” semi-computable basic functions such as constant
functions, projections onto i-th coordinate etc.

– An explicit list of elementary operations, performed over functions, such as composition,
inductive definition, and implicit definition by equation, that can be applied to
several semi-computable functions and “obviously” produces from them a new semi-
computable function.
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After that, the set of partial recursive functions is defined as the minimal set of functions
f : Zm+ → Zn+, with all m,n ≥ 0, containing all basic functions and closed w.r.t. all
elementary operations. For details, see e.g. [14], Ch. V.

(iii) Diophantine description (a difficult theorem). A function f : Zm+ → Zn+ is partial recursive
iff there is a polynomial

P (x1, . . . , xm; y1, . . . , yn; t1, . . . , tq) ∈ Z[x, y, t]

such that the graph

Γf := {(x, f(x))} ⊂ Zm+ × Zn+

is the projection of the subset P = 0 in Zm+ ×Zn+×Zq+. For references and a proof, see e.g.
[14], Ch. VI.

2.2. Constructive worlds
An (infinite) constructive world is a countable set X (usually of some finite Bourbaki structures,
such as the set of all error-correcting codes in a fixed alphabet, cf sec. 3.1 below) given together
with a class of structural numberings: intuitively computable bijections ν : Z+ → X which form
a principal homogeneous space over the group of totally recursive permutations of Z+. A finite
constructive world is any finite set.

Categorical Church’s thesis, Part I. Let X, Y be two infinite constructive worlds, νX : Z+ →
X and νY : Z+ → X be their structural numberings, and F be an (intuitive) algorithm that
takes as input an object x ∈ X and produces an object F (x) ∈ Y whenever x lies in the domain
of definition of F ; otherwise it outputs “NO” or works indefinitely.

Then f := ν−1
Y ◦ F ◦ νX : Z+ → Z+ is a partial recursive function.

Categorical Church’s thesis, Part II. Let C be a category, whose objects are some infinite
constructive worlds, and some finite constructive worlds of all finite cardinalities. Define the set
of morphisms C(X,Y ) to be the set partial maps that can be algorithmically computed.

Then C is equivalent to the category having one infinite object Z+, one finite object {1, . . . , n}
of each cardinality, and partial recursive functions as morphisms. If X is finite, then C(X,Y )
consists of all partial maps.

2.3. Kolmogorov complexity and Kolmogorov order
Let X be a constructive world. For any (semi)-computable function u : Z+ → X, the
(exponential) complexity of an object x ∈ X relative to u is

Ku(x) := min {m ∈ Z+ |u(m) = x}

If such m does not exist, we put Ku(x) =∞.

Claim 2.1. There exists such u (“an optimal Kolmogorov numbering”, or “decompressor”) that
for each other (semi)-computable v : Z+ → X, some constant cu,v > 0, and all x ∈ X, one has

Ku(x) ≤ cu,vKv(x)

This Ku(x) is called Kolmogorov complexity of x.
A Kolmogorov order of a constructive world X is a bijection K = Ku : X → Z+ arranging

elements of X in the increasing order of their complexities Ku.
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Notice that any optimal numbering is only partial function, and its definition domain is not
decidable. Moreover, the Kolmogorov complexity Ku itself is not computable: it is the lower
bound of a sequence of computable functions.

The same can be said about the Kolmogorov order. Moreover, on Z+ it cardinally differs
from the natural order in the following sense: it puts in the initial segments very large numbers

that can be at the same time Kolmogorov simple. For example, let an := nn
..
.n

(n times). Then
Ku(an) ≤ cn for some c > 0.

In Sec. 4 below we will discuss other remarkable properties of complexity, in particular, its
self-similar fractal properties.

Finally, the indeterminacy of the complexity related to different choices of optimal functions
u, v is multiplicatively exp(O(1)). The same is true for the Kolmogorov order.

For a thorough treatment of Kolmogorov complexity, cf [10]. Notice that in the literature one
often uses the logarithmic Kolmogorov complexity which is defined as the length of the binary
presentation of Ku(x). It is interpreted as the length of the maximally compressed description
of x. For our purposes, exponential version is more convenient, in particular, because it allows
us to define an unambiguous Kolmogorov order on Z+ or any infinite constructive world.

2.4. Oracle assisted computations
The formal description of partial recursive functions in Sec. 2.1 (ii) allows one to define larger
classes of partial functions that can be obtained by oracle assisted computations. The point is
that the standard elementary operations can be applied to arbitrary partial functions. Therefore
we can add any uncomputable (not partial recursive) functions to the list of basic functions and
consider the minimal subset of partial functions containing this expanded list and closed wrt
elementary operations.

This option was used in [20] in order to define the respective extensions of the notion of
complexity and apply them to the explanation of Zipf’s law in the situations, related to oracle
assisted computations and library reuse, cf Sec. 4 below.

Formally, we are considering the (pro)perad generated by the elementary operations on partial
functions and various algebras over it. It would be important to understand all relations between
elementary operations. For the first steps in this direction, cf [26]; for a general formalism, cf
[1].

3. Error-correcting codes and their asymptotic bounds
3.1. Basic notations
Choose an alphabet A, a finite set of cardinality q ≥ 2. A code C ⊂ An is a subset of words of
length n. Hamming distance between two words of the same length is defined as

d((ai), (bi)) := card{i ∈ (1, . . . , n) | ai 6= bi}

Code parameters are the cardinality of the alphabet q and the numbers n(C), k(C), d(C) defined
by:

n(C) := n, k(C) := k := [logq card(C)], d(C) := d = min {d(a, b) | a, b ∈ C, a 6= b}

Briefly, C is an [n, k, d]q-code. Its code point is the point

x(C) :=

(
k(C)

n(C)
,
d(C)

n(C)

)
∈ [0, 1]2

Coordinates of x(C) = (R(C), δ(C)) are called transmission rate and relative distance, respect-
ively.
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The idealized scheme of using error-correcting codes for information transmission can be
described as follows. Some source data are encoded by a sequence of code words. After
transmission through a noisy channel at the receiving end we will get a sequence of possibly
corrupted words. If we know probability of corruption of a single letter, we can calculate, how
many corrupted letters in a word we may allow for safe transmission; pairs of code words must
be then separated by a larger Hamming distance. This necessity puts an upper bound on the
achievable transmission rate.

A good code must maximize minimal relative distance when the transmission rate is chosen.
Our discussion up to now was restricted to unstructured codes: arbitrary subsets of words.

Arguably, one more property of good codes is the existence of efficient algorithms of encoding
and decoding. This can be achieved by introduction of structured codes. A typical choice is
represented by linear codes: for them, A is a finite field of q elements, and C is a linear subspace
of Fn

q .

3.2. Asymptotic bound
Call the multiplicity of a code point the number of codes that project onto it.

Theorem 3.1 (Yu. Manin, 1981 and 2011). There exists a continuous function αq(δ), δ ∈ [0, 1],
with the following properties:

(i) The set of code points of infinite multiplicity is exactly the set of rational points (R, δ) ∈
[0, 1]2 satisfying R ≤ αq(δ). The curve R = αq(δ) is called the asymptotic bound.

(ii) Code points x of finite multiplicity all lie strictly above the asymptotic bound and are called
isolated ones: for each such point there is an open neighborhood containing x as the only
code point.

(iii) The same statements are true for linear codes, with a possibly different asymptotic bound
R = αlinq (δ).

3.3. Can one compute an asymptotic bound?
During the thirty years since the discovery of the asymptotic bounds, many upper and lower
estimates were established for them, especially for the linear case: see the monograph [25].
Upper bounds helped to pinpoint a number of isolated codes.

However, the following most natural problems remain unsolved:

• To find an explicit formula for αq or αlinq .

• To find any single value of αq(δ) or αlinq (δ) for 0 < δ < 1−q−1 (at the end segment [1−q−1, 1]
these function vanish).

• To find any method of approximate computation of αq(δ) or αlinq (δ).

• Clearly, αlinq ≤ αq. Is this inequaliy strict somewhere?

3.4. A brief survey of some known results
(i) One can count the number of codes of bounded block length n and plot their code points.
The standard probabilistic methods then give the following Gilbert-Varshamov bounds.

Most unstructured q-ary codes lie lower or only slightly above the Hamming curve

R = 1−Hq(δ/2), Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ)
Most linear q-ary codes lie near or only slightly above the Gilbert-Varshamov bound

R = 1−Hq(δ)

In particular,

αq(R) ≥ αlinq (R) ≥ 1−Hq(δ)
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(ii) A useful combinatorial upper estimate is the Singleton bound:

R(C) + δ(C) ≤ 1 + 1/n(C)

Hence αq(δ) ≤ 1 − δ. It follows that code points lying above this bound are isolated. The
following Reed-Solomon (linear) codes C ⊂ Fn

q belong to this group.
Choose parameters 1 ≤ k ≤ n ≤ q, d = n + 1− k. Choose pairwise distinct x1, . . . , xn ∈ Fq,

Embed the space of polynomials f(x) ∈ Fq[x] of degree ≤ k − 1 into Fn
q by

f 7→ (f(x1), . . . , f(xn)) ∈ Fn
q

After works of Goppa, this construction was generalized. Points x1, . . . , xn ∈ Fq were replaced
by rational points of any smooth algebraic curve over Fq, and polynomials by sections of an
invertible sheaf. This allowed one to construct non-isolated linear codes lying partly strictly
above the Gilbert-Varshamov bound.

This implies that we cannot “see” the asymptotic bound, plotting the set of (linear) code
points of bounded size: we will see a cloud of points, whose upper bound concentrates near the
Hamming or Varshamov-Gilbert bounds.

3.5. Partition function for codes involving complexity
The situation drastically changes, at least theoretically, if we allow ourselves to rearrange the
codes in the order of growing Kolmogorov complexity.

In order to state our principal theorem, notice that the function αq(δ) is continuous and
strictly decreasing for δ ∈ [1, 1− q−1). Hence the limit points domain R ≤ αq(δ) can be equally
well described by the inequality δ ≤ βq(R) where βq is the function inverse to αq.

Fix an R ∈ Q ∩ (0, 1). For ∆ ∈ Q ∩ (0, 1), put

Z(R,∆;β) :=
∑

C:R(C)=R,∆≤δ(C)≤1

Ku(C)−β+δ(C)−1

where Ku is an (exponential) Kolmogorov complexity on the constructive world of all codes in
a given alphabet of cardinality q.

Theorem 3.2. (i) If ∆ > βq(R), then Z(R,∆;β) is a real analytic function of β.

(ii) If ∆ < βq(R), then Z(R,∆;β) is a real analytic function of β for β > βq(R) such that its
limit for β − βq(R)→ +0 does not exist.

The following thermodynamical analogies justify our interpretation of the asymptotic bound
a phase transition curve.

a) The argument β of the partition function corresponds to the inverse temperature.

b) The transmission rate R corresponds to the density ρ.

c) Our asymptotic bound transported into (T = β−1, R)-plane as T = β−1
q (R) becomes the

phase transition boundary in the (temperature, density)-plane.

4. Zipf’s law and Kolmogorov order
4.1. Zipf ’s law
G. Zipf studied the frequencies with which words of a natural language are used in various
texts. He found a remarkably stable pattern [27, 28]: if all words wk of a language are ranked
according to decreasing frequency of their appearance in a representative corpus of texts, then
the frequency pk of wk is approximately inversely proportional to its rank k: see e.g. Fig. 1 in
[12] based upon a corpus containing 4 · 107 Russian words.
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Zipf himself has suggested that this distribution “minimizes effort”. Mandelbrot in [11] has
shown that if we postulate and denote by Ck a certain “cost” (of producing, using etc.) of the

word of rank k, then the frequency distribution pk ∼ 2−h
−1Ck minimizes the ratio h = C/H,

where C :=
∑

k pkCk is the average cost per word, and H := −
∑

k pk log2 pk is the average
entropy, see [13].

We get from this a power law, if Ck ∼ log k. An additional problem, what is so special about
power −1, must be addressed separately.

In all such discussions, it is more or less implicitly assumed that empirically observed
distributions concern fragments of a potential countable infinity of objects. In the mathematical
model suggested in [20] it is assumed that these objects form an infinite constructive world in
the sense of 2.2 above. Below I will survey this model.

4.2. How minimization of complexity leads to Zipf ’s law
A mathematical model of Zipf’s law is based upon two postulates:

(A) Rank ordering coincides with a Kolmogorov ordering (up to a factor exp (O(1))), cf 2.3
above.

(B) The probability distribution producing Zipf’s law (with exponent −1) is (an approximation
to) the L. Levin maximal computable from below distribution: see [29, 8, 9, 10].

If we accept (A) and (B), then Zipf’s law follows from two basic properties of Kolmogorov
complexity:

(a) rank of w defined according to (A) is exp (O(1)) ·K(w).

(b) Levin’s distribution assigns to an object w probability ∼ KP (w)−1 where KP is the
exponentiated prefix Kolmogorov complexity (cf [10, 2]), and we have, up to exp(O(1))-
factors,

K(w) � KP (w) � K(w) · log1+εK(w)

with arbitrary ε > 0.

There is a slight discrepancy between the growth orders of K and KP . This discrepancy
ensures the convergence of the series

∑
wKP (w)−1. On finite sets of data this small discrepancy

is additionally masked by the dependence of both K and KP on the choice of an optimal
encoding.

“Minimization of effort” is thus achieved if effort itself is interpreted as the length of the
maximally compressed prefix free description of an object.

Such a picture makes sense especially if the objects satisfying Zipf’s distribution, are generated
rather than simply observed.

This matches very well the results of the previous section on asymptotic bounds for error-
correcting codes: if one produces codes in the order of their Kolmogorov complexity rather
than size, their code points will well approximate the picture of the whole domain under the
asymptotic bound. Moreover, Levin’s distribution very naturally leads to the thermodynamic
partition function on the set of codes, and to the interpretation of asymptotic bound as a phase
transition curve. In sec. 2, we have written it in the form the form

∑
C K(C)−s(C) where s(C)

is a certain function defined on codes and including as parameters analogs of temperature and
density. We could replace K with KP , and freely choose the optimal family defining complexity:
this would have no influence at all on the form of the phase curve/asymptotic bound.

It is interesting to observe that the mathematical problem of generating good error-correcting
codes historically made a great progress in the 1980’s with the discovery of algebraic geometric
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Goppa codes, that is precisely with the discovery of greatly compressed descriptions of large
combinatorial objects.

To summarize, the class of a priori probability distributions that we are considering here is
qualitatively distinct from those that form now a common stock of sociological and sometimes
scientific analysis: cf a beautiful synopsis of the latter by Terence Tao in [23] who also stresses
that “mathematicians do not have a fully satisfactory and convincing explanation for how the
Zipf’s law comes about and why it is universal”.

What arguments could furnish such an explanation? Ubiquity of Gaussian distribution,
for example, is often explained away by appealing to the central limit theorem: average of
many independent random (equally distributed) variables tends to be Gaussian for whatever
initial distribution. Below I will argue that universality of Zipf’s law is similarly based on the
surprisingly self-similar nature of Kolmogorov complexity.

4.3. Fractal landscape and self-similarity of the Kolmogorov complexity
In [10] (pp 103, 105, 178), one can find a schematic graph of logarithmic complexity of naturals.
The visible “continuity” of this graph reflects the fact that complexity of k+1 in any reasonable
encoding is almost the same as complexity of k. It looks as follows: most of the time it follows
closely the graph of log k, but infinitely often it drops down, lower than any given computable
function:

One does not see or suspect self-similarity. But it is there: if one restricts this graph onto
any infinite decidable subset of Z+ in increasing order, one will get the same complexity relief
as for the whole Z+: in fact, for any recursive bijection f of Z+ with a subset of Z+ we have
K(f(x)) = exp(O(1)) ·K(x).

If we pass from complexity to a Levin’s distribution, that is, basically, invert the values of
complexity, these fractal properties survive.

This property can be read as the extreme stability of such a distribution with respect to the
passage to various sub-universes of objects, computable renumbering of objects etc., in the same
way as the picture of random noise in a stable background is held responsible for universality of
normal distribution.

4.4. Complexity on the background of oracle assisted computations and library reuse
In [24] and [arXiv:cs/0508023] T. Veldhuizen considers Zipf’s law in an unusual context that did
not exist in the days when Kolmogorov, Solomonov and Chaitin made their ground-breaking
discoveries, but which provides, in a sense, landscape for an industrial incarnation of complexity.
Namely, Veldhuizen studies actual software and software libraries and analyzes possible profits
from software reuse. Metaphorically, this is a picture of human culture whose everyday existence
depends on a continuous reuse of treasures created by researchers, poets, philosophers, cf
[Manin Y I arXiv:1301.0081].

Mathematically, reuse furnishes new tools of compression: roughly speaking, a function f may
have a very large Kolmogorov complexity, but the length of the library address of its program
may be short, and only the latter counts if one can simply copy the program from the library.

In order to create a mathematical model of reuse and its Zipf’s landscape, the notion of an
admissible set of partial functions note, I need to define the mathematical notion of relative
Kolmogorov complexity K(f |Φ).

4.5. Admissible sets of functions
Consider a set Φ of partial functions f : (Z+

+)m → (Z+
+)n, m,n ≥ 0. We will call Φ an admissible

set, if it is countable and satisfies the following conditions.
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(i) Φ is closed under composition and contains all projections (forget some coordinates), and
embeddings (permute and/or add some constant coordinates).
Any (m+ 1, n)-function can be considered as a family of (m,n)-functions

(uk) : uk(x1, . . . , xm) := u(x1, . . . , xm, k)

From (i) it follows that for any u ∈ Φ and k ∈ Z+
+, also uk ∈ Φ. Similarly, if u(x1, . . . , xm)

is in Φ, then

U(x1, . . . , xm, xm+1, . . . , xm+n) ≡ u(x1, . . . , xm)

is in Φ.

(ii) For any (m,n), there exists such an (m+ 1, n)-function u ∈ Φ that the family of functions
uk : (Z+

+)m → (Z+
+)n, contains all (m,n)-functions belonging to Φ. We will say that such a

function u (or family (uk)) is ample.

(iii) Let f be a total recursive function f whose image is decidable, and f defines a bijection
between D(f) and image of f . Then Φ contains both f and f−1.

It is shown in [20] that one can define analog of complexity with respect to such a set, K(x |Φ)
and, moreover, that such sets can be obtained as “algebras” over a (pro)perad generated by
standard operations that usually are applied only to partially recursive functions.

There are many instances of empiric Zipf’s laws where our picture might be applicable:
cf [6, 5, 4] and also [Murtra B C and Solé R 2010 On the Universality of Zipf ’s Law, Santa
Fe Institute, unpublished, available online]. Such a reduction of the Zipf law for natural
languages might require for its justification some neurobiological data: cf [12], appendix A
in [arXiv:0710.0105].

5. Feynman graphs and perturbation series in quantum physics
5.1. A toy model
Feynman path integral is an heuristic expression of the form∫

P e
S(ϕ)D(ϕ)∫

P e
S0(ϕ)D(ϕ)

(5.1)

or, more generally, a similar heuristic expression for correlation functions.
In the expression (5.1), P is imagined as a functional space of classical fields ϕ on a space-time

manifold M ; S : P → C is a functional of classical action measured in Planck’s units. S0 is its
quadratic part, or “free field action”.

Usually S(ϕ) itself is an integral over M of a local density on M called Lagrangian. In our
notation

S(ϕ) = −
∫
M
L(ϕ(x))dx

The Lagrangian density may depend on derivatives, include distributions etc.
Finally, the integration measure D(ϕ) and the integral itself

∫
P should be considered as

symbolic constituents of the total expression (4.1) conveying a vague but powerful idea of
“summing quantum amplitudes over virtual classical trajectories”.

In our toy model, we will replace P by a finite-dimensional real space. We endow it with a
basis indexed by a finite set of “colors” A, and an Euclidean metric g encoded by the symmetric
tensor (gab)a,b∈A. We put (gab) = (gab)

−1.
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The action functional S(ϕ) is a formal series in linear coordinates (ϕa) on P, of the form

S(ϕ) = S0(ϕ) + S1(ϕ)

where

S0(ϕ) := −1

2

∑
a,b

gabϕ
aϕb and S1(ϕ) :=

∞∑
k=1

1

k!

∑
a1,...,ak∈A

Ca1,...,akϕ
a1 . . . ϕak (5.2)

where (Ca1,...,an) are certain symmetric tensors.
Below we will consider (gab) and (Ca1,...,an) as independent formal variables, “formal

coordinates on the space of theories”.
We will express the toy version of (5.1) as a formal series over (isomorphism classes of) graphs.
A (combinatorial) graph τ , by definition, consists of two finite sets: flags Fτ and vertices

Vτ . Besides, an involution jτ of Fτ is given, showing which pairs of flags form halves of edges,
and which are not (tails). Finally, the map ∂τ : Fτ → Vτ shows to which vertex each graph is
incident. The geometric realization of τ is a topological space whose structure is suggested by
the choice of words in the definition given by Figure 1:

• f

??
??

??
??f ′=jτ (f ′)

��
��
��
��

jτ (f)
•

??
??

??
??

��
��
��
��

∂τ (f ′′)=∂τ (jτ (f ′′))

•

??
??

??
??

�������

???????

Figure 1. Geometric realization of τ

Each edge e consists of a pair of flags denoted ∂e, and each vertex v determines the set of
flags incident to it denoted Fτ (v). By χ(τ) we denote the Euler characteristic of the geometric
realization of τ .

Theorem 5.1. Let λ be a formal parameter. Then∫
P e

λ−1S(ϕ)D(ϕ)∫
P e

λ−1S0(ϕ)D(ϕ)
=
∑
τ∈Γ

λ−χ(τ)

|Aut τ |
w(τ) (5.3)

where τ runs over isomorphism classes of all finite graphs τ . The weight w(τ) of such a graph
is determined by the action functional (1.2) as follows:

w(τ) :=
∑

u:Fτ→A

∏
e∈Eτ

gu(∂e)
∏
v∈Vτ

Cu(Fτ (v)) (5.4)

More precisely, the identity (5.2) is obtained by first interpreting the integrands in the
numerator of (5.2) as formal series in (gab, Ca1,...,ak), and then integrating term-wise by using
the well known formulas for Gaussian integrals.
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6. Graphs as flowcharts, and Hopf algebras
6.1. Graphs as flowcharts
Feynman diagrams of more realistic models and graphs used in the computation theory can be
considered as flowcharts describing the flow of information from a part of tails playing role of
inputs to another part, playing role of outputs. At vertices, the information gets processed.

In order to make such an interpretation workable, we need pay more attention to orientation.
Orientation of a graph τ is the decoration Fτ → LF = {in, out} such that halves of any edge
are decorated by different labels.

Tails of τ oriented in (resp. out) are called (global) inputs T inτ (resp. (global) outputs T outτ )
of τ . Similarly, Fτ (v) is partitioned into inputs and outputs of the vertex v.

An oriented graph τ is called directed if it satisfies the following condition:
On each connected component one can define a continuous real valued function (“time”) in

such a way that moving in the direction of orientation along each flag inreases the value of this
function.

In particular, oriented trees and forests are always directed, and physical Feynman diagrams
without loops as well.

An abstract flowchart is a directed graph endowed with the decoration of its vertices by a set
Op of (names of) operations that can be performed on certain inputs producing certain outputs.
Generally, flags are also labeled by types of the arguments.

To be more precise, flowcharts in theoretical computer science form a natural hierarchy.
At the lower level of this hierarchy, histories of computations are situated. For example, the

sequence of the states of a Turing machine, performing a concrete computation, may be encoded
by a flowchart, in which inputs of all vertices are decorated by 0 or 1, and vertices themselves
carry either the name of identical operation or the name of the internal state of the head, reading
the respective site. Such a history may well be infinite.

At higher levels flowcharts may serve as descriptions: programs represented as compositions
of some subprograms, but not specifying concrete values of arguments and thus hiding the actual
computation process and/or compressing the notation.

We omit here a formal definition of admissible sets of decorated flowcharts: cf [17, 18] for
further details. Briefly, an admissible set must be closed wrt finite disjoint unions and cuts that
will be defined below.

For another version of flowcharts see [22].

6.2. Connes-Kreimer bialgebras of flowcharts [3]
Let Fl be an admissible set of decorated graphs, k := a commutative ring. We denote by
H = HFl the k-linear span of isomorphism classes [τ ] of graphs τ in Fl and define multiplication
by

m : H ⊗H → H, m ([σ]⊗ [τ ]) :=
[
σ
∐

τ
]

We pass now to cuts and comultiplication.
Let τ be an oriented graph. Call a proper cut C of τ any partition of Vτ into a disjoint union

of two non-empty subsets V C
τ (upper vertices) and Vτ,C (lower vertices) satisfying the following

conditions:

(i) For each oriented wheel in τ , all its vertices belong either to V C
τ , or to Vτ,C .

(ii) If an edge e connects a vertex v1 ∈ V C
τ to v2 ∈ Vτ,C , then it is oriented from v1 to v2

(“information flows only from past to future” ).

(iii) Two improper cuts: τC := τ or τC = τ .
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Denote by τC (resp. τC) the subgraphs of τ consisting of vertices V C
τ (resp. Vτ,C) and

incident flags. Put

∆ : H → H ⊗H, ∆([τ ]) :=
∑
C

[
τC
]
⊗ [τC ]

sum being taken over all cuts of τ.

Claim 6.1. (i) m defines on H the structure of a commutative k-algebra with unit [∅]. Set
η : k → H and 1k 7→ [∅].

(ii) ∆ is a coassociative comultiplication on H with counit

ε : H → k,
∑
τ∈Fl

a[τ ][τ ] 7→ a[∅]

(iii) (H,m,∆, ε, η) is a commutative bialgebra with unit and counit.

Theorem 6.2 (K. Ebrahimi-Fard, D. Manchon [7]). H is a Hopf algebra (i. e. has a unique
antipode) if one can introduce an grading on H such that

m(Hp ⊗Hq) ⊂ Hp+q, ∆(Hn) ⊂ ⊕p+q=nHp ⊗Hq

and moreover, H0 = k[∅] is one-dimensional, so that H is connected.

A possible choice of such grading:

Hn := the k-submodule of H spanned by [τ ] ∈ Fl with |Fτ | = n.

7. Regularization and renormalization
7.1. Regularization by “minimal subtraction”
Generally, by regularization we mean “producing a finite answer from infinite one”. A typical
example is this.

Consider the ring A of germs of meromorphic functions of z at z = 0. Put A− := z−1C[z−1],
and denote by A+ the ring of germs of regular functions at z = 0. The value of regular function
at zero is εA(f) := f(0). Any germ is unique sum of regular one and one belonging to A−.

If a function is not necessarily regular, the regularized value of f at 0 is εA(f+) = f+(0),
where

f+(z) := f(z)− the polar part of f.

Generally, a “minimal subtraction algebra” is a commutative associative K-algebra A
represented as the direct sum of two linear subspaces A = A+ ⊕A−, each being a subalgebra.
Usually A is unital and 1 ∈ A; besides, we have an augmentation homomorphism εA : A+ → K.

7.2. Connes-Kreimer renormalization
This is a version of regularization that:

(i) is performed simultaneously for an infinite family of functions indexeded by flowcharts;

(ii) uses the “division by the collective pole part” in a noncommutative group in place of
subtraction of an individual pole.
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More precisely, consider a Hopf K-algebra H, and a minimal subtraction unital algebra
A+,A− ⊂ A, εA : A → K.

Denote by G(A) the group of K-linear maps ϕ : H → A such that ϕ(1H) = 1A, with the
convolution product

ϕ ∗ ψ(x) := mA(ϕ⊗ ψ)∆(x) = ϕ(x) + ψ(x) +
∑
(x)

ϕ(x′)ψ(x′′)′

identity e(x) := uA ◦ ε(x), and inversion

ϕ∗−1(x) = e(x) +
∞∑
m=1

(e− ϕ)∗m(x)

In situations that we will consider, for any x ∈ ker ε the latter sum contains only finitely many
non-zero summands.

We will say that ϕ is a character if it is a homomorphism of algebras.
Following Birkhoff, we may now define “collective pole” and “collective regular part” of

ϕ. More precisely, if A is a minimal subtraction algebra, each ϕ ∈ G(A) admits a unique
decomposition of the form

ϕ = ϕ∗−1
− ∗ ϕ+, ϕ−(1) = 1A, ϕ−(ker ε) ⊂ A−, ϕ+(H) ⊂ A+

Values of renormalized polar (resp. regular) parts ϕ− (resp. ϕ+) on ker ε are given by the
inductive formulas

ϕ−(x) = −π

ϕ(x) +
∑
(x)

ϕ−(x′)ϕ(x′′)

 , ϕ+(x) = (id− π)

ϕ(x) +
∑
(x)

ϕ−(x′)ϕ(x′′)


Here π : A → A− is the polar part projection in the algebra A.

Physicists invented these inductive formulas: they are known as BPZH-renormalization, for
Bogolyubov-Parasyuk-Zimmermann-Hepp.

7.3. Deforming the Halting Problem
Let f be a partial recursive function.The Halting Problem for f is that of recognizing whether
a number k ∈ Z+ belongs to its definition domain D(f). In this subsection, we will translate it
into the problem, whether an analytic function Φ(k, f ; z) of a complex parameter z has a pole
at z = 1.

The relevant minimal subtraction algebra will be a version of our example from 6.1. Let A+

be the algebra of analytic functions in |z| < 1, continuous at |z| = 1, εA : Φ(z) 7→ Φ(1). Put

A− := (1− z)−1C[(1− z)−1], A := A+ ⊕A−

We now choose an appropriate programming method P and construct its Hopf algebra.
Basically, H = HP is the symmetric algebra, spanned by isomorphism classes [p] of certain
descriptions. Comultiplication in HP is dual to the composition of descriptions.

The main choice is that of characters, corresponding to the halting problem.
The character ϕk : HP → A corresponding to the halting problem at a point k ∈ Z+ for

the partial recursive function computable with the help of a description p ∈ P (Z+,Z+), will be
defined as ϕk([p]) := Φ(k, f ; z) ∈ A where the function Φ is described below.
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Using the trick used in the theory of quantum computation (usually applied in the context
of finite automata) we will first reduce the general halting problem to the recognition of fixed
points of permutations.

Start with a partial recursive function f : X → X, where X is a constructive world. Extend
X by one point, i. e. form X

∐
{∗X}. Choose a total recursive structure of an additive group

without torsion on X
∐
{∗X} with zero ∗X . Extend f to the everywhere defined function

g : X
∐
{∗X} → X

∐
{∗X}, g(y) := ∗X if y /∈ D(f)

Define

τf :
(
X
∐
{∗X}

)2
→
(
X
∐
{∗X}

)2
, τf (x, y) := (x+ g(y), y)

It is a permutation. Since (X
∐
{∗X},+) has no torsion, the only finite orbits of τZf are fixed

points.
Moreover, the restriction of τf upon the recursive enumerable subset D(σf ) := (X

∐
{∗X})×

D(f) induces a partial recursive permutation σf of this subset. Since g(y) never takes the
zero value ∗X on y ∈ D(f), but always is zero outside it, the complement to D(σf ) in Y
consists entirely of fixed points of τf . Thus, the halting problem for f reduces to the fixed point
recognition for τf .

7.4. The halting problem renormalization character
Define a Kolmogorov numbering on a constructive world X as a bijection K = Ku : X → Z+

arranging elements of X in the increasing order of their complexities Ku.
Let σ : X → X be a partial recursive map, such that σ maps D(σ) to D(σ) and induces a

permutation of this set. Put σK := K◦σ ◦K−1 and consider this as a permutation of the subset

D(σK) := K (D(σ)) ⊂ Z+

consisting of numbers of elements of D(σ) in the Kolmogorov order.
If x ∈ D(σ) and if the orbit σZ(x) is infinite, then there exist such constants c1, c2 > 0 that

for k := K(x) and all n ∈ Z we have

c1 ·K(n) ≤ σnK(k) ≤ c2 ·K(n)

Now let X = Z+ and let σ be a partial recursive map, inducing a permutation on its definition
domain. Put

Φ(k, σ; z) :=
1

k2
+
∞∑
n=1

zK(n)(
σnK(k)

)2
Then we have:

Theorem 7.1. (i) If σ-orbit of x is finite, then Φ(x, σ; z) is a rational function in z whose all
poles are of the first order and lie at roots of unity.

(ii) If this orbit is infinite, then Φ(x, σ; z) is the Taylor series of a function analytic at |z| < 1
and continuous at the boundary |z| = 1.

3Quantum: Algebra Geometry Information (QQQ Conference 2012) IOP Publishing
Journal of Physics: Conference Series 532 (2014) 012018 doi:10.1088/1742-6596/532/1/012018

14



References
[1] Borisov D and Manin Y 2008 Generalized operads and their inner cohomomorhisms In Geometry and

Dynamics of Groups and Spaces (In memory of Aleksander Reznikov) eds M Kapranov et al Progress
in Math 265 (Birkhäuser) p 247
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