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Abstract. Supersymmetry and superfields are considered in connection with Poincaré superalgebras. A
formalism of projection operators for deriving wave equations for ordinary fields and superfields is developed.
Superfield equations of motion in the case of massive and massless fields are presented together with an
application in linear supergravity.

1. Supersymmetry, superfields, Poincaré superalgebra
Supersymmetry has been known more than few decades, but it is still alive despite the absence
of experimental verification. Supersymmetry offers several relevant theoretical solutions for
modern physics.

1.1. Supersymmetry (Bose-Fermi symmetry)
Let us consider a general N = 1 superfield

φi(x, θ) = Ai(x) + θ̄ψi(x) + θ̄θFi(x) + θ̄γ5θGi(x) + θ̄iγµγ5θAµi + θ̄θθ̄χi(x) + (θ̄θ)2Di(x)

where θα is a four-component anticommuting Majorana spinor and i is a Lorentz index.
Now we introduce the most general Poincaré superalgebra [1]. The generators of the Poincaré

group Pµ and Mµν , and n supergenerators Sα (α = 1, 2, . . . , n) satisfy the following relations:[
Pµ, P ν

]
= 0[

Mµν , P ρ
]

= ηνρPµ − ηµρP ν[
Mµν ,Mρσ

]
= ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ[

Sα, P
µ
]

= 0[
Sα,M

µν
]

= Bµν
αβSβ

where ηµν = diag(+ - - -).
The simple N = 1 supersymmetry algebra is related to the bispinor representation of the

Lorentz group. We have four bispinor generators Sα, Bµν = 1
2σ

µν and Aµ = γµC. The N -
extended Poincaré superalgebra is related to the direct sum of N bispinor representations.

1.2. New possibilities [2]
• In the most general case the matrices Aµ are related to the β-matrices of an invariant first

order wave equation

(i∂µβ
µ −m)ψ(x) = 0
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in the following way: Aµ = βµC. Here ψ(x) corresponds to a representation of the Lorentz
group and Bµν are the Lorentz generators of the corresponding representation.

• If we consider new possibilities for N = 1 superalgebras, we can take the Rarita-Schwinger
equation for a vector-bispinor field and use the β-matrices of the Rarita-Schwinger equation

(βµ)ρσ = γµηρσ +

(
a√
3
− 1

2

)
ηµργσ +

(
b√
3
− 1

2

)
γρηµσ +

(
a+ b

4
√

3
+
c

4
+

3

8

)
γργµγσ

• If we take an irreducible representation for generators Sα (vector representation (1/2, 1/2),
e.g), then there is no first order wave equation and we get {Sα, Sβ} = 0.

• If we consider the Kemmer-Duffin equation for spin 0, ψ(x) is a direct sum of vector
and scalar fields and therefore 5 generators Sα also correspond to vector and scalar
representations. As a result we get the Bose superalgebra.

Let us turn to the (N = 1) Poincaré supergroup and algebra. It is well known that there are
the following physically interesting irreducible representations: massive representations (m,Y ),
where superspin Y gives Poincaré spins s = Y +1/2, Y , Y −1/2, and the massless representations
(0, Y ), where we have the helicities s = Y + 1/2 and Y .

The problem is: if we consider different Lorentz superfields ϕi(x, θ), we need additional
conditions to guarantee that our field or combination of fields describe physical states with a
given mass and superspin. Such additional conditions are relativistic wave equations. The most
familiar of them for ordinary fields is the Dirac equation, which describes a fermion field with a
given rest mass m and spin 1/2.

We have developed a quite powerful method of constructing and analyzing relativistically
invariant wave equations for fields and superfields to describe states with a certain mass and
spin (superspin), and also wave equations for massless fields. Our method is based on spin
projection and superspin projection operators. In order to understand the main principles of
our method, we first describe its ideas used in the case of ordinary fields and then generalize
them to the case of superfields.

2. Ordinary Lorentz fields, wave equations, spin projection operators
We consider a finite dimensional Lorentz field ψ(x) and demand, that ψ(x) is a solution of the
n-th order wave equation [3]

i∂µ1 . . . i∂µnβ
µ1...µnψ(x) = mnψ(x)

where the matrices βµ1...µn satisfy the commutation relations[
Sµν , βµ1...µn

]
=
∑
l

(ηνµlβµ1...µ...µn − ηµµlβµ1...ν...µn)

The most simple example of equations is the well-known Dirac equation.
It is easy to verify that the wave equation determines the mass of a given physical state. If we

take the momentum representation and consider a p̂-system with momentum p̂µ = (εmi,~0) (the
rest system of a particle), the wave equation reduces to the eigenvalue problem of the matrix
β0...0

β0...0ψ =

(
εm

mi

)n
ψ or β0...0ψ = λiψ

Now it follows that to each nonzero eigenvalue λi there corresponds a nontrivial solution ψi,
which describes masses mi = εm(λi)

−1/n.
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When dealing with equations it is natural to suppose that no other subsidiary conditions are
imposed, because it is well known that wave equations with additional restrictions on fields are
in general inconsistent when interactions with other fields are introduced. Also it follows from
the above given relation for masses that only the first and second order equations may have a
physical (real) mass spectrum. Using relativistic wave equations we define the proper Poincaré
basis. It follows that β0...0 commutes with the Lorentz generators Skl, (k, l = 1, 2, 3) (spin
generators). The Poincaré basis ψµisσ at rest is defined as the eigenfunction of three operators

β0...0, ~S2 and S3:

β0...0ψmisσ = λiψmisσ,
~S2ψmisσ = s(s+ 1)ψmisσ S3ψmisσ = σψmisσ

The state of an arbitrary momentum p = Lp̂ is obtained from the rest state ψmisσ via the boost
transformation.

Dealing with irreducible Lorentz fields ψi, ψj , . . ., we introduce covariant spin projection
operators P sij , satisfying (no sum over j)

P sijP
s′
jk = δss′P

s
ik

where P sii are ordinary projection operators that extract spin s from ψi, i.e. ψsi = P siiψi, and
P sij (i 6= j) are spin transition operators, i.e. ψsi = P sijψj . Now the n-th order wave equation
previously introduced is presented in a general matrix form

(−�)n/2β0...0(∂)ψ(x) = mnψ(x)

where

β0...0(∂) =

a11P11 . . . a1nP1n
...

. . .
...

an1Pn1 . . . annPnn

 , ψ(x) =

ψ1(x)
...

ψn(x)


Here aij are arbitrary numerical coefficients and operators Pij are

Pij =
∑
s

aij(s)P
s
ij

In the first order equations case aij(s) are uniquely determined, in the second order case there
is some freedom of choice for aij(s).

Example 2.1 (spin 3/2). Spin 3/2 equations for a vector-bispinor field ψµα(x) may be
represented in the following two-component form:

i �1/2

(
P

3/2
11 + 1

2P
1/2
11 aP

1/2
12

bP
1/2
21 cP

1/2
22

)(
ψ1

ψ2

)
= m

(
ψ1

ψ2

)
where 1 is a representation 1 = (1, 1/2)⊕(1/2, 1) and 2 = (1/2, 0)⊕(0, 1/2). Depending on
the choice of free real parameters a, b and c we get a lot of different equations. For example, if
ab = −1/4 and c = −1/2 we have a single spin 3/2 equation (Rarita-Schwinger equation). In
the case of ab = c/2 we have an equation which describes fields of spin 3/2 with mass m and of
spin 1/2 with mass m′ = m/|c+ 1/2| (the latter equations are important in the massless case).
There are also equations describing spin 3/2 and two spin 1/2 fields with different masses. The
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properties of spin 1/2 are determined by the eigenvalues of the 2 × 2 spin 1/2 matrix
(

1/2 a
b c

)
.

The covariant form of the above given equation is

(i∂ −m)ψµ + i

(
a√
3
− 1

2

)
∂µγνψ

ν + i

(
b√
3
− 1

2

)
γµ∂νψ

ν + i

(
3

8
+
c

4
− a+ b

4
√

3

)
γµ∂γνψ

ν = 0

At that the invariant bilinear form and Lagrangian are given, which means that one can develop
the usual Lagrangian formalism for free and interacting fields, as well as derive Green’s functions.

Example 2.2 (spin 2). In the spin 2 case the second order wave equation has a matrix form

�

(
P 2
11 − 1

2P
0
11 aP 0

12

bP 0
21 cP 0

00

)(
ψ1

ψ2

)
+m2

(
ψ1

ψ2

)
= 0

Its covariant form for a symmetric tensor field is

�hµν − ∂µ∂ρh
ρν − ∂ν∂ρhρµ +

(
1

2
− a√

3

)
∂µ∂νhρρ +

(
1

2
− b√

3

)
ηµν∂ρ∂σh

ρσ

+

(
a+ b

4
√

3
+
c

4
− 3

8

)
ηµνhρρ +m2hµν = 0

Depending on the choice of a, b and c we get different equations, describing either a single spin
2, or spin 2 and spin 0.

Similarly one can derive equations for higher spins: 5/2, 3 etc. These are of course more
complex.

3. Massless gauge invariant equations
Let us consider the problem of massless fields [4]. It turns out that the same formalism of spin
projection operators is useful to derive massless gauge invariant equations for a given helicity.
Moreover, we also get additional restrictions on external sources when interactions with an
external source are included.

There are different possibilities to describe massless fields, but the most common is to use
gauge invariant equations. If we use equations for massive fields, treated above, it appears that
some of them are invariant under gauge transformations and describe massless fields with a given
helicity. If we write the relativistically invariant wave equation in the massless case (m = 0) as
πψ(x) = 0 and assume that there is a gauge transformation δψ = Qgε, where Qg is an operator
of gauge transformation, then for certain types of equations in addition to Qg there also exists
an operator Qz, satisfying Qzπ = 0. The latter means that if we consider interactions with some
external source πψ(x) = J we get a source constraint QzJ = 0.

Example 3.1 (helicity 3/2). If ab = c/2, the equation

i∂/ψµ + i

(
a√
3
− 1

2

)
∂µγνψ

ν + i

(
b√
3
− 1

2

)
γµ∂νψ

ν + i

(
3

8
+
ab

4
− a+ b

4
√

3

)
γµ∂/γνψ

ν = 0

is gauge invariant under the following gauge transformation

δψµ = ∂µε− 1

4

(
1 +

√
3

2a

)
γµ∂/ε

where ε is an arbitrary bispinor field. In our formalisms there are no additional conditions on ε.
The source constraint is

∂µJ
µ − 1

4

(
1 +

√
3

2b

)
∂/γµJ

µ = 0
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Example 3.2 (helicity 2). If ab = −c/2, the equation

� hµν − ∂µ∂ρhρν − ∂ν∂ρhρµ +

(
1

2
− a√

3

)
∂µ∂νhρρ +

(
1

2
− b√

3

)
ηµν∂ρ∂σh

ρσ

+

(
a+ b

4
√

3
− ab

2
− 3

8

)
ηµνhρρ = 0

is invariant under the gauge transformation

δhµν = ∂(µεν) − 1

4

(
1 +

√
3

2a

)
ηµν∂ρε

ρ

The source constraint reads

∂µJ
µν − 1

4

(
1 +

√
3

2b

)
∂νJµµ = 0

It should be mentioned that in our approach no other subsidiary conditions are needed. Usually
the gauge transformation is written as δhµν = ∂(µεν) with the additional restriction ∂ρε

ρ = 0.
Such additional restriction usually leads to inconsistencies when interactions are included.

It is interesting to note that the massive equations we obtain from gauge invariant equations
adding the mass term are not single particle equations. In the s = 3/2 case, for example, spin
1/2 is also present. The same is true in the s = 2 case, where spin 0 is also present.

4. Superfield equations of motion, superspin projection operators
Analogous considerations are applicable in the superfield case [5, 6, 7]. To consider irreducible
Lorentz superfields ψi(x, θ), ψj(x, θ), . . ., we introduce superspin projection operators EYij ,
satisfying (no sum over j)

EYijE
Y ′
jk = δY Y ′EYik

EYii are ordinary projection operators that separate superspin Y from ψi, i.e. ψYi = EYii ψi,
and EYij (i 6= j) are spin transition operators, i.e. ψYi = EYijψj . However, the calculation of
superprojectors is rather more complicated than in the ordinary field case. We have developed
the formalism of calculation of projection operators in the cases of N = 1 and N -extended
superfields.

Now the n-th order wave equation, previously introduced, is presented in a general matrix
form

(−�)n/2Π(∂,D)ψ(x, θ) = mnψ(x, θ)

where

Π(∂,D) =

a11E11 . . . a1nE1n
...

. . .
...

an1En1 . . . annEnn

 , ψ(x, θ)

ψi(x, θ)...
ψn(x, θ)


D is a four component superderivative. Here aij are arbitrary numerical coefficients and
operators Eij are

Eij =
∑
Y

aij(Y )EYij

In most cases aij(Y ) are uniquely determined.
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5. Massive superfield equation (Y = 3/2)
Here we consider, as an example, only the superspin 3/2 case which is mostly used in the N = 1
linear massive supergravity [8, 9]. It appears that if we use only the vector superfield hµ(x, θ)
we obtain the equation

�

(
E

3/2
11 −

2

3
E0

11

)µ
ν

hν(x, θ) +m2hµ(x, θ) = 0

which describes superspin 3/2 and also superspin 0 with nonphysical mass im
√

3/2. For that
reason some other additional restrictions must be added to eliminate nonphysical superspin 0.

Therefore it is useful to add scalar superfield ϕ(x, θ) and use two superfields. Let us consider
the following equation:

�

(
E

3/2
11 − 2

3E
0
11 aE0

12

bE0
21 cE0

00

)(
ϕ1

ϕ2

)
+m2

(
ϕ1

ϕ2

)
= 0

where ϕ1 is a vector superfield and ϕ2 is a scalar superfield.

The superspin 0 depends on the eigenvalues of the matrix
(
−2/3 a
b c

)
. A single superspin 3/2

is described if ab = −4/9 and c = 2/3, in other cases one or two superspin 0 fields are also
present. In the covariant form the equation reads

2

3

[(
� +

d2

4

)
hµ − ∂µ∂νhν

]
− 1

6
εµνρσ∂

ρdσhν+
a

2
d∂µϕ+m2hµ = 0, − b

2
d∂νh

ν− c
4
d2ϕ+m2ϕ = 0

where

d = D̄D, dµ = iD̄γµγ5D

Different approaches to massive equations are presented in Ref. [10].

6. Massless superfield equation for Y = 3/2
Let us consider the gauge invariant massless equations presented in Ref. [11]. If we substitute
m = 0 in the massive superfield equation and write it as πψ(x, θ) = 0 we get massless equations
only if there exists a gauge transformation δψ = Qgε, where Qg is an operator and ε a superfield.
Moreover, in addition to Qg which satisfies πQg = 0 there also exists an operator Qz, satisfying
Qzπ = 0. The latter means that if we consider interactions with an external source

πψ(x, θ) = J(x, θ)

we get a source constraint QzJ(x, θ) = 0. Gauge transformations also set conditions on free
coefficients a11, a12, . . . . As a matter of fact, the operators Qg and Qz are uniquely expressed
via the superspin projection operators.

Example 6.1 (massless superspin 3/2). The above mentioned superspin equation is gauge
invariant only if ab = −2c/3. Take for simplicity a = b = −2/3, then

2

3

[(
� +

d2

4

)
hµ − ∂µ∂νhν

]
− 1

6
εµνρσ∂

ρdσhν − 1

3
d∂µϕ = 0,

1

3
d∂νh

ν − 1

6
d2ϕ = 0

The gauge transformation is now

δhµ = D̄γµε(x, θ), δϕ = D̄ε(x, θ)
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where ε(x, θ) is a spinor superfield.
If we consider interaction with an external source

2

3

[(
� +

d2

4

)
hµ − ∂µ∂νhν

]
− 1

6
εµνρσ∂

ρdσhν − 1

3
d∂µϕ = Jµ(x, θ)

1

3
d∂νh

ν − 1

6
d2ϕ = J(x, θ)

we have the source constraint

(γµD)αJ
µ(x, θ)−DαJ(x, θ) = 0

From the last constraint it follows that

2i∂µJ
µ = dJ, D̄(d)DJ = 0

In N = 1 supergravity models Jµ(x, θ) is connected with an axial source superfield
(supercurrent), J(x, θ) is a scalar source superfield, and hµ(x, θ) is called the metric superfield.
It should be mentioned that the latter conditions were posed out of some physical considerations.
But adding to hµ(x, θ) a scalar superfield ϕ(x, θ), we obtain normal gauge invariant second order
equation, which in the free field case describes massless superspin 3/2. Including interaction with
an external source we obtain a unique source constraint, which has previously been used in a
more complicated and artifical form.

7. Conclusions
We have developed an interesting approach to fields and superfields of arbitrary spin and
superspin. At present the field equations for higher spins and superfield equations may seem
uninteresting, since they have no useful applications in modern field theory, but this need not
remain so. For example, it is possible to analyze different string and superstring models via the
fields and superfields. We have analyzed a few string models, writing down the equations for
the component fields, and it appears that these equations are not consistent if interactions are
introduced.
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