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Abstract. The Richardson-Gaudin model describes strong pairing correlations of fermions confined to a
finite chain. The integrability of the Hamiltonian allows the algebraic construction of its eigenstates. In this
work we show that the quantum group theory provides a possibility to deform the Hamiltonian preserving
integrability. More precisely, we use the so-called Jordanian r-matrix to deform the Hamiltonian of the
Richardson-Gaudin model. In order to preserve its integrability, we need to insert a special nilpotent term
into the auxiliary L-operator which generates integrals of motion of the system. Moreover, the quantum
inverse scattering method enables us to construct the exact eigenstates of the deformed Hamiltonian. These
states have a highly complex entanglement structure which require further investigation.

The Richardson-Gaudin model [1, 2] is an integrable spin-1
2 periodic chain with Hamiltonian

H =
N∑
j=1

εjS
z
j + g

N∑
j, k=1

S−j S
+
k (1)

where g is a coupling constant and S±l = Sxl ± iSyl , with N copies of the Lie algebra su(2)
generators Sαl ,

[Sαl , S
β
l′ ] = iεαβ γSγδl l′ , α, β = x, y, z

As shown by Cambiaggio et al [3], by introducing the fermion operators c†lm and clm related to
the sl(2) generators by

Szl = 1/2
∑
m

c†lmclm − 1/2, S+
l =

1

2

∑
m

c†lmc
†
lm̄ = (S−l )†

the Richardson-Gaudin model in Eq. (1) gets mapped onto the pairing model Hamiltonian

HP =
∑
l

εln̂l + g/2
∑
l,l′

A†lAl′ (2)

Here c†lm (clm) creates (annihilates) a fermion in the state | lm〉 (with | lm̄〉 in the time reversed
state of | lm〉) and

nl =
∑
m

c†lmclm, A†l = (Al)
† =

∑
m

c†lmc
†
lm̄
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are the corresponding number- and pair-creation operators. The pairing strengths gll′ are here
approximated by a single constant g, with εl the single-particle level corresponding to the m-fold
degenerate states | lm〉.

As it is well-known, the pairing model in Eq. (2) is central in the theory of superconductivity.
Richardson’s exact solution of the model [1], exploiting its integrability, has been important for
applications in mesoscopic and nuclear physics where the small number of fermions prohibits
the use of conventional BCS theory [4]. Moreover, its (pseudo)spin representation in the guise
of the Richardson-Gaudin model, Eq. (1), provides a striking link between quantum magnetism
and pairing phenomena, both central concepts in the physics of quantum matter.

The eigenstates of the Richardson-Gaudin Hamiltonian, eq. (1), can be constructed
algebraically using the quantum inverse scattering method (QISM) [5, 6]. The main objects
of this method are the classical r-matrix

r(λ, µ) =
4

λ− µ
∑
α

Sα ⊗ Sα
s= 1

2

' 1

λ− µ

(
1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

)
(3)

where h(λ), X+(λ), X−(λ) are the generators of the loop algebra L(sl(2)) whereas the L-matrix
is

L(λ) =

(
h(λ) 2X−(λ)

2X+(λ) −h(λ)

)
The commutation relations (CR) of loop algebra generators are given in compact matrix form

[L1(λ), L2(µ)] = −[r1 2(λ, µ), L1(λ) + L2(µ)]

where

L1(λ) = L(λ)⊗ I, L2(µ) = I⊗ L(µ)

and r(λ, µ) is the 4 × 4 c-number matrix in Eq. (3). A consequence of this form is the
commutativity of transfer matrices,

t(λ) =
1

2
tr0(L2(λ)) ∈ L(sl(2)), [t(λ), t(µ)] = 0 (4)

The corresponding mutually commuting operators extracted from the decomposition of t(λ)
define a Gaudin model [2, 7]. However, to get Richardson Hamiltonian a mild change of the
L-operator is necessary

L(λ)→ L(λ; c) := c h0 + L(λ)

where h0 = σz0 in auxiliary space C2
0 of spin 1/2. This transformation does not change the CR

of matrix elements of this matrix L(λ; c) due to the symmetry of the r-matrix (3):

[Y ⊗ I + I⊗ Y, r(λ, µ)] = 0, Y ∈ sl(2)

The resulting transfer matrix obtains some extra terms

t(λ; c) =
1

2
tr0 (L(λ; c))2 = c21 + c h(λ) + h2(λ) + 2

(
X+(λ)X−(λ) +X−(λ)X+(λ)

)
Let us consider a spin-1

2 representation on auxiliary space V0 ' C2 and spin `k representations

on quantum spaces Vk ' C`k+1 with extra parameters εk corresponding to site k = 1, 2, . . . , N .
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The whole space of quantum states is H = ⊗N1 Vk and the highest weight vector (highest spin,
”ferromagnetic state”) |Ω+〉 satisfies

X+(λ) |Ω+〉 = 0, h(λ) |Ω+〉 = ρ(λ) |Ω+〉 (5)

where

ρ(λ) =
N∑
k=1

lk/(λ− εk)

It is useful to introduce notation for global operators of sl(2)-representation Ygl :=
∑N

k=1 Yk. To
find the eigenvectors and spectrum of t(λ) on H one requires that vectors of the form

|µ1, . . . , µM 〉 =

M∏
j=1

X−(µj) |Ω+〉

are eigenvectors of t(λ),

t(λ) |{µj}Mj=1〉 = Λ
(
λ; {µj}Mj=1

)
|{µj}Mj=1〉

provided that the parameters µj satisfy the Bethe equations:

2c+
N∑
k=1

`k/(µi − εk)−
M∑
j 6=i

2/(µi − µj) = 0, i = 1, . . . ,M (6)

The realization of the loop algebra generators on the space H takes the form

h(λ) =
N∑
k=1

hk
λ− εk

, X−(λ) =
N∑
k=1

X−k
λ− εk

, X+(λ) =
N∑
k=1

X+
k

λ− εk
(7)

The coupling constant g of (1) is connected with parameter c = 1/g while the Hamiltonian
(1) is obtained as operator coefficient of term 1/λ2 in the expansion of t(λ; c) at λ→∞.

The quantum group theory provides a possibility to deform a Hamiltonian preserving
integrability [8, 9]. Specifically, we use the so-called Jordanian r-matrix to quantum deform
the Hamiltonian of Richardson-Gaudin model (1). We add to sl(2) symmetric r-matrix (3) the
Jordanian part

rJ(λ, µ) =
C⊗2
λ− µ

+ ξ
(
h⊗X+ −X+ ⊗ h

)
with Casimir element C⊗2 in the tensor product of two copies of sl(2),

C⊗2 = h⊗ h+ 2
(
X+ ⊗X− +X− ⊗X+

)
After Jordanian twist the r-matrix (14) is commuting with the generator X+

0 only[
X+

0 ⊗ I + I⊗X+
0 , r

(J)(λ, µ)
]

= 0
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Hence, one can add the term cX+
0 +L(λ, ξ) to the L-operator. This yields the twisted transfer-

matrix

t(J)(λ) =
1

2
tr0(cX+

0 + L(λ, ξ))2 = cX+(λ) + h(λ)2 − 2h′(λ) + 2(2X−(λ) + ξ)X+(λ) (8)

The corresponding commutation relations between the generators of the twisted loop algebra
are explicitly given by

[h(λ), h(µ)] = 2ξ
(
X+(λ)−X+(µ)

)
,

[
X−(λ), X−(µ)

]
= −ξ

(
X−(λ)−X−(µ)

)
[
X+(λ), X−(µ)

]
= −h(λ)− h(µ)

λ− µ
+ ξX+(λ),

[
X+(λ), X+(µ)

]
= 0 (9)

[
h(λ), X−(µ)

]
= 2

X−(λ)−X−(µ)

λ− µ
+ ξh(µ),

[
h(λ), X+(µ)

]
= −2

X+(λ)−X+(µ)

λ− µ

The realization of the Jordanian twisted loop algebra LJ(sl(2)) with CR (9) is given similar
to (7) with extra terms proportional to the deformation parameter ξ

h(λ) =
N∑
k=1

(
hk
λ−εk

+ξX+
k

)
, X−(λ) =

N∑
k=1

(
X−k
λ−εk

− ξ
2
hk

)
, X+(λ) =

N∑
k=1

X+
k

λ−εk
(10)

To construct eigenstates for the twisted model one has to use operators of the form [9, 10]

BM (µ1, . . . , µM ) = X−(µ1)
(
X−(µ2) + ξ

)
. . .
(
X−(µM ) + ξ(M − 1)

)
acting by these operators on the ferromagnetic state |Ω+〉.

The deformed Richardson-Gaudin model Hamiltonian can now be extracted from the transfer-
matrix t(J)(λ) as the operator coefficient in its expansion λ→∞.

According to (4) and (8) one can also extract quantum integrals of motion Jk using the
realization (10). It would yield rather cumbersome expressions for Jk :

t(J)(λ) = J0 +
1

λ
J1 +

1

λ2
J2 + . . .

The corresponding quantum deformed Hamiltonian reads

H ' J2 = c

N∑
j=1

εjX
+
j + 2ξ


 N∑
j=1

εjhj

X+
gl − hgl

N∑
j=1

εjX
+
j

+
(
h 2
gl + 2hgl + 4X−glX

+
gl

)
It is instructive to write down a simplified case without the Jordanian twist: ξ = 0. One thus
obtains

J0 = 0, J1 = X+
gl , J2 '

N∑
k=1

εkX
+
k + g/2

(
h 2
gl + 2hgl + 4X−glX

+
gl

)
The case ξ = 0 can also be obtained by taken off from the inhomogeneous XXX spin chain.
The model can be described by a 2× 2 monodromy matrix [5]

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
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and entries of this matrix satisfy quadratic relations

R(λ, µ)T (λ)⊗ T (µ) = (I ⊗ T (µ)) (T (λ)⊗ I)R(λ, µ) (11)

If we multiplay T (λ) by a constant 2× 2 matrix M(ε) the resulting matrix T̃ (λ) = M(ε) · T (λ)
will satisfy the same relation (11). Choosing a triangular matrix M(ε) = ( 1 ε

0 1 )the entries of
monodromy matrices become simply related:

Ã = A+ εC, B̃ = B + εD, C̃ = C, D̃ = D.

This choice of M(ε) (of the same type as considered in [11]) permits us to use the same reference

state |Ω+〉 ∈ H (5) and B̃ as a creation operator of the algebraic Bethe ansatz [5].

Bethe states are given by the same action of product operators B̃(µj) = B(µj) + εD(µj)
although operators B(µj) do not commute with D(µj):

D(λ)B(µ) = α(λ, µ)B(µ)D(λ) + β(λ, µ)B(λ)D(µ)

where

α(λ, µ) = (λ− µ+ η)/(λ− µ), β(λ, µ) = −η/(λ− µ)

For a 3 magnon state one gets due to B-D ordering

3∏
j=1

B̃(µj) =
3∏
j=1

B(µj) + ε
3∑
s=1

α(µk, µs)α(µs, µl)B(µk)B(µl)D(µs)

+ ε2
3∑
s=1

α(µk, µs)α(µl, µs)B(µs)D(µk)D(µl) + ε3
3∏
j=1

D(µj)

Similar formula is valid for M -magnon state. Hence, acting on ferromagnet state | Ω+〉, we
obtain filtration of states with eigenvalues of Sz : N2 ,

N
2 − 1, N2 − 2, N2 − 3.

More complicated deformations of the Richardson-Gaudin model can be obtained using r-
matrices related to the higher rank Lie algebras [12]. The structure of the eigenstates of the
transfer matrix and their entanglement properties [13] are under investigation.
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