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Abstract. We consider the problem of finding Clifford-Klein forms in a class of homogeneous spaces
determined by inclusions of real Lie algebras of a special type which we call strongly regular. This class
of inclusions is described in terms of their Satake diagrams. For example, the complexifications of such
inclusions contain the class of subalgebras generated by automorphisms of finite order. We show that the
condition of strong regularity implies the restriction on the real rank of subalgebras. This in part explains
why the known examples of Clifford-Klein forms are rare. We make detailed calculations of some known
examples from the point of view of the Satake diagrams.

1. Introduction
We say that a pair of reductive Lie groups (G,H) is a Clifford-Klein form, if there is a discrete
subgroup Γ ⊂ G acting properly discontinuosly on G/H such that the double coset Γ \G/H is
compact. Riemannian locally symmetric spaces yield a class of examples of such pairs. In this
case, H is compact. We are interested in the case when H is non-compact. It is important in
geometry to solve the problem of finding Clifford-Klein forms. We refer to the survey [5], as well
as research papers [4, 6, 7, 8, 10] and references therein for motivation and known results. The
importance of Clifford-Klein forms comes from the fact that such homogeneous spaces G/H may
carry various important invariant geometric structures which descend onto compactifications
Γ\G/H. For example this kind of compactification was used in [11, 3] to construct new examples
of symplectic structures. The problem of determining whether a pair (G,H) is a Clifford-Klein
form is difficult. There is the ”Calabi-Markus phenomenon” that homogeneous space G/H with
G and H of equal real ranks cannot have infinite discrete subgroups Γ ⊂ G acting freely and
uniformly on G/H. The existence of some invariant geometric structures on G/H eliminates the
possibility of G/H being a Clifford-Klein form. For example, para-hermitian symmetric spaces
cannot be Clifford-Klein forms. Lorentz space forms admit compact forms only in the flat case
and in case of negative sectional curvature, if the dimension is odd, see [5]. The following
method of proof that (G,H) is a Clifford-Klein form was found in [4]. We restrict ourselves to
homogeneous spaces G/H of reductive type, which means that both G and H are reductive and
their Cartan decompositions can be made compatible, see details in [4]. To prove that G/H is
a Clifford-Klein form, one can consider the Lie algebras g ⊃ h and look for a second subalgebra
l (which also corresponds to a closed Lie subgroup L ⊂ G) with the following properties. Both
h and l are compatible with the Cartan decomposition of g:

g = k⊕ p, h = h ∩ k⊕ h ∩ p, l = l ∩ k⊕ l ∩ p, dim p = dim h ∩ p + dim l ∩ p

and maximal Cartan subspaces a ⊂ p, a′ ⊂ h ∩ p, a′′ ⊂ l ∩ p can be chosen in a way that

a′ ∩ ∪w∈Ww · a′′ = {0}
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for the little Weyl group

W = W (g, a) = NG(a)/ZG(a)

Thus, given a triple (G,H,L) one can check if it yields a Clifford-Klein form by the described
method. However there is no way in sight of looking for triples (G,H,L) satisfying these
conditions. The purpose of this note is to propose a procedure of detecting Clifford-Klein
forms among a certain class of homogeneous spaces. The idea is to restrict ourselves to a
special family of embeddings H ⊂ G and L ⊂ G (and, on the Lie algebra level, to inclusions
h ⊂ g, l ⊂ g), which we call strongly regular. It seems that singling out much more ”tame” class
of subgroups is useful for understanding the problem of constructing Clifford-Klein forms. Our
inclusions are obtained by a certain procedure applied to ”generalized” Dynkin diagrams of the
complexification gc, these are called the diagrams of type S(A) in [2]. In particular, subalgebras
generated by automorphisms of finite order ϕ : gc → gc belong to this class. Introducing this
class of subalgebras allows us to describe the problem of finding Clifford-Klein forms in terms of
the Satake diagrams. We make all calculations in detail for some known examples of Clifford-
Klein forms. These calculations, as well as the main theorem reveal the algebraic nature of the
difficulties arising in constructing Clifford-Klein forms, and explain to some extent why they are
so rare. The main result of this paper shows that the strong regularity condition together with
the condition of Kobayashi put restrictions on the real rank of subgroups, which should be ≤ 2.
It is worth mentioning that we don’t know any examples of Clifford-Klein forms obtained by the
described method [4] which are not strongly regular.

2. Notation and preliminaries
We use basics of the theory of (semisimple) real and complex Lie algebras without further
explanations. Our terminology and notation are close to [9]. Let g be a real semisimple Lie
algebra. Consider a Cartan decomposition g = k ⊕ p. Fix a maximal abelian subalgebra a ⊂ p
and consider the real root system Σ ⊂ a∗ of g. The choices made yield the decompositions

g = g0 ⊕
∑
λ∈Σ

gλ, g0 = zg(a), g0 = (g0 ∩ k)⊕ a

Let ∆ be the root system of gc. In what follows we make several observations and choices
which relate Σ and ∆. Choose a Cartan subalgebra t ⊂ g as a maximal abelian subalgebra in g
containing a. This yields the decompositions

t = t+ ⊕ a, tc = (t+)c ⊕ ac

It is known that tc is an algebraic subalgebra consisiting of semisimple elements, and, therefore

tc(R) = (it+)⊕ a

The latter enables one to introduce the restriction map r : tc(R) → a∗, and to show that
r(∆ ∪ {0}) = Σ ∪ {0}. Let

∆0 = {α ∈ ∆ | r(α) = 0}, ∆1 = ∆ \∆0

The decomposition ∆ = ∆0 ∪∆1 yields the decompositions

(g0∩ k)c = tc⊕
∑
α∈∆0

gcα, gcλ =
∑

r(α)=λ

gcα, gc = tc⊕
∑
α∈∆0

gcα⊕
∑
λ∈Σ

∑
r(α)=λ

gcα, α ∈ ∆1, λ ∈ Σ
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It is visible from the latter formula that ∆0 is a root system for the semisimple part of (g0 ∩ k)c.
One assigns to any real semisimiple Lie algebra the Satake diagram as follows. It is a Dynkin
diagram of gc with vertexes of two types, black and white. Black vertexes αi are those for which
r(αi) = 0. White vertexes αj and αk are joined by an arrow if r(αj) = r(αk). It is known that
two semisimple real Lie algebras are isomorphic if and only if so are their Satake diagrams. As
usual, we consider the dual root systems Σ and Σ∨ and relate the corresponding vectors by the
formula µ(α∨) = 2(µ, α)/(α, α) = 〈µ |α〉. The Cartan matrix A = AΣ corresponding to Σ is a
matrix with elements aij = 〈αi |αj〉, where αi are simple roots of Σ. Note that αi is a black
root in the Satake diagram, if and only if α∨i centralizes ac = (〈Σ∨〉)c.

3. On Clifford-Klein forms generated by strongly regular triples
In order to introduce the class of subalgebras we are interested in, we need to describe the notion
of the diagram of type S(A) in the sense of [2]. Note that our description is very brief and we
recommend the reader to consult [2], Chapter X. Let E be a real vector space of dimension n.
A subset {α0, ..., αn} ⊂ E is called a subset of type S(A) if

(i) aij =
2(αi,αj)
(αi,αi)

∈ −Z+ for i 6= j

(ii) S(A) = {α0, ..., αn} is an indecomposable system of vectors (that is, S(A) cannot be
decomposed into a sum of orthogonal non empty subsets),

(iii) S(A) is a linearly dependent system of vectors generating E, in particular

det(aij) = detA = 0

One associates to each matrix A a diagram S(A) as follows (note that in the sequel we use the
same notation for the set S(A), and for the corresponding diagram). We take n + 1 vertexes,
join the i-th and j-th vertexes by aij · aji lines, and if |aij | < |aji|, these lines have an arrow
pointing towards the i-th vertex. The corresponding diagram will be called the diagram of
type S(A). All such diagrams are classified and one can find this classification in [2] on page
503. Note that we don’t reproduce this table, but just mention that it consists of extended

Dynkin diagrams (these are of types A
(1)
n , B

(1)
n , C

(1)
n , D

(1)
n , E

(1)
6 , E

(1)
7 , E

(1)
8 , F

(1)
4 , G

(1)
2 ), and two

other types: A
(2)
2n , D

(2)
n+1, A

(2)
2n−1, E

(2)
6 , and D

(3)
4 .

Let us mention the relation between the diagrams of type S(A) and the Dynkin diagrams of
simple complex Lie algebras. The diagrams of types S(A) correspond to those automorphisms
ν : gc → gc of simple complex Lie algebras gc, which are induced by the automorphisms (of
order k = 1, 2, 3) of the Dynkin diagrams. Then, the subalgebra (gc)ν of fixed points has the
Dynkin diagram determined by the subdiagram S(A)\{ρ0} for a suitable choice of a root ρ0 (we
refer to Section 5 of Chapter X in [2], especially Examples 1 and 2 and arguments on page 508).
Moreover, simple roots of S(A) \ {ρ0} are restrictions of simple roots from the Dynkin diagram
of gc onto a Cartan subalgebra of (gc)ν . Let us adopt the following notation: Π is the set of
simple roots for the root system ∆, Π̃ will be reserved for the set {α0, ..., αn} of roots generating

the extended Dynkin diagram of rank n, while Π̂ will denote any of the possible generating sets
of diagrams S(A) \ {ρ0}. Note that Π̂ can be considered as a subset of Π̃, but in general not as
a subdiagram.

Definition 3.1. We say that an inclusion of real semisimple Lie algebras is strongly regular, if

• the inclusion of their complexifications hc ⊂ gc is described as follows: the Dynkin diagram
of hc is obtained by removing certain vertexes from one of the diagrams of Π̂ = S(A)\{ρ0},

• if Σ = r(∆) and r1(∆′) = Σ′ are real root systems of g, and h respectively, then Π′Σ ⊂ r(Π̃).
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Note that semisimple part of any subalgebra hc = (gc)ϕ of fixed points of an automorphism ϕ of
finite order satisfies the first condition of the definition. This follows from Theorem 5.15 in [2].
Indeed, the Dynkin diagram of such subalgebra is obtained by removing certain vertexes from
Π̂ (according to a certain rule which is not used here).

Remark 3.2. In the proof of the main result we use only the second condition of the definition.
However, in order to calculate examples we need to use the Satake diagrams, and, therefore,
some conditions which enable us to calculate the Dynkin diagrams of hc and lc. This is the
reason why we prefer to define our class using both restrictions (on Π′,Π′′ and Π′Σ,Π

′′
Σ).

There is the notion of regularity for subalgebras of complex Lie algebras (see [9], Chapter
6). Note that maximal regular subalgebras are obtained by removal one or two vertexes from
the extended Dynkin diagram (see Theorem 1.2 in [9]). It is known that maximal semisimple
subalgebras of maximal rank are of the form (gc)ν for an inner involutive automorphism
ν : gc → gc, and therefore, are obtained from diagrams S(A) as well. We don’t know if all
regular subalgebras can be obtained from diagrams of types S(A). The triple (g, h, l) is called
strongly regular, if h and l are strongly regular subalgebras in g. We say that a Clifford-Klein
form is generated by a strongly regular triple (G,H,L), if the corresponding triple (g, h, l) is
strongly regular, L acts properly on G/H and the double coset space L \G/H is compact.

Recall that such triple always produces a Clifford-Klein form if there is a cocompact
torsionfree lattice Γ ⊂ L [4]. Now we are ready to formulate the main result of this work.

Theorem 3.3. Assume that G is a simple Lie group which is a non-compact real form of
a complex classical Lie group. Any strongly regular triple of semisimple Lie groups (G,H,L)
generating the Clifford-Klein form has the property that at least one of the subgroups has real
rank ≤ 2.

Proof. Let Π be the system of simple roots of gc, Π′ and Π′′ be the systems of simple roots for
hc and lc, respectively. Then, for the restriction maps r1 and r2 (built for h and l, respectively),
r1(Π′) = Π′Σ, r2(Π′′) = Π′′Σ. By the assumption of strong regularity

Π′Σ ∪Π′′Σ ⊂ r(Π̃)

it follows that

a′ = 〈Π′Σ), a′′ = 〈Π′′Σ〉, a = 〈ΠΣ〉 = 〈r(Π̃)〉

The latter implies that the condition ∪w∈Ww ·a′∩a′′ = {0} is satisfied if and only if w(Π′Σ)∪Π′′Σ
is linearly independent in a for any w ∈ W . We are going to show that the latter implies the
condition of the Theorem. This will be done by considering each of the classical Lie groups
separately. Let g be a non-compact real form of a complex simple Lie algebra. The type of ΠΣ

is known for all simple Lie algebras, for example, from [9]. Note also that

r(Π̃) =

{
ΠΣ, if r(α0) = 0

ΠΣ ∪ {r(α0)}, otherwise

This implies the inclusions

Π′Σ ⊂ ΠΣ ∪ {r(α0)}, Π′′Σ ⊂ ΠΣ ∪ {r(α0)}

because of the strong regularity assumption. Looking at Table 4 in [9] one can notice that only
the following types of Σ are possible:
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(i) gc of type An: Σ may have types An, BCp and Cp, with p ≤ [n2 ]− 1

(ii) gc of type Bn: Σ has type Bp, with p < n

(iii) gc of type Cn: Σ has type Cn, or BCp, p < n

(iv) gc of type Dn: Σ has type Cp or BCp, p < n

Let us begin our case by case analysis.

• type Bp In this case,

ΠΣ = {α1 = ε1 − ε2, α2 = ε2 − ε3, ..., αp−1 = εp−1 − εp, αp = εp}

Since W ∼= WΣ acts on ΠΣ permuting all εi and possibly changing signs εi → (±)εi, it has
two orbits O1 consisting of roots α1, ..., αp−1, and O2 consisting of αp = εp. Note that r(α0)
may belong to Π′Σ, or to Π′′Σ or may not.

(i) if r(α0) /∈ Π′Σ ∪Π′′Σ, then, from the definition of r one can see that

Π′Σ ∪Π′′Σ ⊂ ΠΣ

and the only possibility of their linear independence is that one of these sets is O2,
and the other is a subset of O1. But the latter means that the rank of the subalgebra
coresponding to Π′Σ must be one.

(ii) if r(α0) ∈ Π′Σ, then the following possibilities may occur:

r(α0) ∈ O1, r(α0) ∈ O2, r(α0) 6∈ O1 ∪ O2

In the first case, the linear independence is achieved, if one of the sets Π′Σ or Π′′Σ has
a form {αn}, and the other consists of vectors in O2. This case again, yields the rank
one. If r(α0) ∈ O2, necessarily Π′Σ = {r(α0), αn}, and the rank of the corresponding
real Lie subalgebra is 2. If r(α0) does not belong to O1 ∪O2, this means that still the
rank is 1 or 2, because in any case one of the subspaces a′ or a′′ does not contain any
vector from O1.

• type Cp, BCp. The argument is similar. We have

ΠΣ = 〈α1 = ε1 − ε2, ..., εp−1 − εp, αp = 2εp〉

It follows that still ΠΣ has two orbits O1 = {α1, ..., αp−1} and O2 = {αp}.
• type An differs, because in this case W acts transitively on on ΠΣ, and the only possible new

orbit of W may appear if r(α0) does not belong to this orbit. Thus, one of the subalgebras
must have real rank 1.

Note that our theorem contains a bit more than the restriction on the real rank. It contains
a procedure of looking for possible regular Clifford-Klein forms. The latter goes as follows.

• Given a (say, simple) classical Lie algebra g, consider its complexification gc and all the

diagrams of type S(A) with the set of vertexes Π̂ = S(A) \ {ρ0}, and write down possible
strongly regular subalgebras,

• looking at the corresponding Satake diagrams of these subalgebras, choose those which
satisfy Π′Σ ⊂ ΠΣ ∪ {r(α0)} and such that one of them has real rank ≤ 2,

• check the condition dim p = dim p′ + dim p′′.
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4. Examples
Let us analyze examples constructed by T. Kobayashi in [4, 5] from the point of view of strongly
regular triples.

Example 4.1. The triple

(G = SU(2n, 2), H = SU(2n, 1), L = Sp(n, 1))

is a strongly regular Clifford-Klein form.

To prove this, we pass to the Lie algebra level. Thus

g = su(2n, 2), h = su(2n, 1), l = sp(n, 1)

gc = sl(2n+ 2,C), hc = sl(2n+ 1,C), l = sp(n+ 1,C)

which shows that all considered complex Lie algebras are simple, and have types, respectively,
A2n+1, A2n and Cn. Consider the embedding hc ⊂ gc determined by the corresponding inclusion

Π′ = {α2, ..., α2n+1} ⊂ Π = {α1, ..., α2n+1}

Looking at the corresponding Satake diagrams for the real forms su(2n, 2) and su(2n, 1) we
determine Σ and Σ′. Let us begin with the Satake diagram on for su(2n, 2):

α1 α2 α2n−1 α2n α2n+1
◦ dd ::◦ dd ::• • ◦ ◦

Figure 4.1. Satake diagram for su(2n, 2).

We see that a = 〈Σ∨〉 and

g = zg(〈Σ∨〉)⊕
∑
λ∈Σ

gλ

where Σ = 〈ᾱ1, ᾱ2〉. Note that the black roots α3, ..., α2n−1 determine the semisimple part of
zg(〈Σ∨〉). Consider

Σ′ = 〈ᾱ2〉 ⊂ Σ = 〈ᾱ1, ᾱ2〉, h = zg(〈(Σ′)∨〉)⊕
∑
λ∈Σ′

gλ

Clearly, h ⊂ g. In order to determine the Satake diagram of the semisimple part hs of h, we
need to determine the Dynkin diagram for hcs and vertexes which represent roots αi, whose duals
α∨i centralize 〈(Σ′)∨〉. Since α∨3 , ..., α

∨
2n−1 centralize 〈(Σ′)∨〉, they belong to the Dynkin diagram

of hcs, and represent black vertexes of the corresponding Satake diagram. It is known that the
Cartan matrix (aij) of gc has aii = 2, ai,i+1 = −1 and aij = 0, j 6= i. For example, one can
consult [1]. It follows that α2n(α∨2 ) = 0, for n > 1. Thus, α2n must belong to the Dynkin
diagram of hcs, and must be black. Hence, the Satake diagram for hcs must contain α2, ..., α2n.
Looking at the table of all possible Satake diagrams of simple real Lie algebras, one concludes
that there is only one possibility for the Satake diagram which contains the part {α2, ..., α2n+1}
with black roots α3, ..., α2n. This is the diagram

α2 α3 α2n α2n+1
◦ dd ::• • ◦

Figure 4.2. Satake diagram for su(2n, 1).
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The latter is the Satake diagram of su(2n, 1), which means that hs = h = su(2n, 1). We see
that h is embedded into g in a strongly regular way, as required, because Π′Σ ⊂ r(Π) ⊂ r(Π̃) (in

this case, the diagram of type S(A) is the extended Dynkin diagram with the set of roots Π̃).

Consider the case of l = sp(n, 1) ⊂ sl(2n + 1,C). On the complex Lie algebra level, the Lie
algebra of type A2n+1 admits an involutive automorphism ν such that lc = (gc)ν . The root

system of (gc)ν is obtained from the diagram S(A) of type A
(2)
2n+1 (in the terminology of [2]).

This diagram has the form

α0 α1 α2 αn αn+1
◦ ks ◦ ◦ ◦ ◦ ks ◦

Figure 4.3. Diagram S(A) of type A
(2)
2n+1.

The Dynkin diagram of lc is obtained from the diagram of type A
(2)
2n+1 by removing vertex α0.

Looking again at the Satake diagrams of su(2n, 2) and sp(n, 1) one can argue exactly as in the
previous case and calculate that r2(α1) = 0, r2(α2) = α2. Here is the required Satake diagram:

α1 α2 αn+1
• ◦ • • • ks •

Figure 4.4. Satake diagram for sp(n, 1).

Thus, Π′′Σ ⊂ r(Π̂) ⊂ r(Π̃), where Π̂ is determined by the diagram of type A
(2)
2n+1. This shows

that l is a strongly regular subalgebra in g.
It remains to prove that the corresponding triple yields a Clifford-Klein form. Looking at the

Satake diagrams and consulting Table 4 on page 231 in [9] we get the types of the root systems

Σ = 〈ᾱ1, ᾱ2〉, Σ′ = 〈ᾱ1〉, Σ′′ = 〈ᾱ2〉

where Σ has type BC2, while Σ′ and Σ′′ both have rank 1. It follows that

Σ = 〈ε1 − ε2, ε2〉, Σ′ = 〈ε1 − ε2〉, Σ′′ = 〈ε2〉

Since the Weyl group W of Σ acts on Σ by permuting indices and changing signs, for any w ∈W ,
wᾱ1, α2 always constitute a base for a, and this is equivalent to the statement we wanted to
prove. The condition

dim p = dim p′ ⊕ dim p′′

is checked directly, in this case one can also use [9], Table 4 on page 229.

Example 4.2. In [5] the author analyzed the problem of existence of Clifford-Klein forms in the
class of (non-Riemannian) symmetric spaces and pointed out some of them which are Clifford-
Klein. Our method yields similar results (we restrict ourselves to the case when G is a real form
of non-compact type of a complex simple Lie group). Here is an example.

Theorem 4.3. The following triples are strongly regular, satisfy the restrictions of Theorem 3.3
and generate Clifford-Klein forms:

(SU(2, 2n), Sp(1, n), U(1, 2n))

(SO(2, 2n), U(1, n), SO(1, 2n))

(SO(4, 4n), SO(3, 4n), Sp(1, n))

(SO(4, 4n), SO(3, 4n), Sp(1, n)× Sp(1))

(SO(3, 4), G2(2), SO(1, 4))

(SO(8, 8), SO(7, 8), SO(1, 8))

(SO(4, 4), SO(3, 4), SO(1, 4))

(SO(4, 4), SO(3, 4), SO(1, 4)× SO(3))
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Proof. There are several ways of proof. One of the possibilities is to use the method described
in Example 4.1 (the first triple has been already worked out in detail).
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