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Abstract. Chaotic strings are a special type of non-hyperbolic coupled map lattices, exhibiting a rich
structure of complex dynamical phenomena with a surprising correspondence to physical contents. Chaotic
strings are generated by the Chebyshev maps T2(φ) and T3(φ). In this paper we connect the Chebyshev maps
via the Galois theory to the cyclic groups Z2 and Z3 and give some ideas how this fundamental connection
might lead to the emergence of the familiar Lie group structure of particle physics and, finally, even to the
emergence of space-time. The Z3-graded cubic and ternary algebras presented here have been introduced
by R. Kerner in 1991 and then developed and elaborated in collaboration with many researches. We present
here the most important results associated with these papers.

1. Introduction
As far as we understand by now, the relation of chaotic strings with elementary particle
physics is given by the energy dependence of the couplings (usually called running) caused
by the renormalization group of the theories of the Standard Model. Chaotic strings have a
single coupling which, if being identified with the couplings of the Standard Model, unveils a
surprising fact: The minima of the self energy of the chaotic string are related to the masses
of the elementary particles [1, 2]. The details of this relation, however, are still quite unknown.
Even though first progress has been made in understanding the perturbation theory for chaotic
strings [3, 4] including also nonperturbative effects [5], the origin of the pattern for the self
energy of the chaotic string appearing also for strings of length 3 [6] is still unclear.

In this paper we undertake the attempt to shed light on the relation by employing group
theory. As in case of the theories of the Standard Model of elementary particles, group theory
helps to organize particle states. However, in looking at the group theory aspects of chaotic
strings it turns out that group theory appears prior to quantum mechanics and, in addition,
space and time naturally emerge in the course of this. The approach we are following here is
motivated more by inspiration than by manifest calculation and proof.

2. Symmetry group of chaotic strings
Chaotic strings are mathematical objects defined by the iterative map. For simplicity, we look
only at one special case of chaotic strings given by

φn+1
i = (1− a)TN (φni ) +

a

2

(
φni+1 + φni−1

)
As can be seen, besides a Laplace coupling between nearest neighbours chaotic strings are based
on the Chebyshev polynomials TN (x), and it turns out that only the degrees N = 2 and N = 3
are relevant. Interesting for the relation searched for are characteristic points (maxima, minima
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and zeros) not only in the self energy as mentioned in the introduction but also in the map
itself. According to the equation TN (φ) = cos(N arccosφ), characteristic points are the real
values of φN = ±1 and φN = i, as it is displayed in Figure 1 as symbolic “wheels”. To be
more precise, the Galois group of the Chebyshev polynomial TN (x) is SN , the symmetric group
with N elements. The minimal (nontrivial) normal subgroup of SN , finally, is the cyclic group
ZN = Z/(NZ) which are something like turns of the weel by an angle of 120◦.

Figure 1. “Wheels” for maxima (left), zeros (middle) and minima (right)

During his short live, Évariste Galois (1811–1832) has enriched the mathematics of his time
with interesting considerations about polynomials. One of these was the observation that a
polynomial equation is solvable by roots if a chain of normal subgroups exists. This for instance
exclude a polynomial equation of degree N ≥ 5 from being solvable. Modern Galois theory is
formulated in terms of (number) field extensions. In case of the Chebyshev polynomials, these
field extensions would be Q(

√
2) and Q(

√
3).

3. Graded ZN algebras
For this paper we stick with the Galois normal subgroups Z2 and Z3. For these groups one can
define a graded algebra. Cubic and ternary Z3-graded algebras have been introduced by Richard
Kerner in 1991 [7] and developed and elaborated by R. Kerner and his co-authors V. Abramov,
B. Le Roy, L. Vainerman and A. Borowiec in a series of publications dating from 1992 till
2012 [8, 9, 10, 11, 12]. If for instance θ is generator of the cyclic group ZN , the graduation
means that θN = 0. A physical example of a graded Z2 algebra is the creation operator θA of a
quantum state |A〉, for one has

θA|0〉 = |A〉 and (θA)2|0〉 = θA|A〉 = 0

where the second equation expressing Pauli’s exclusion principle for fermions. If there is more
than one generator, we can speak of a graded algebra. In our example, with M = 2 generators
there will be M = 2 different fermionic (spin) states, and the creation operators obey a
Grassmann algebra1

θAθB + θBθA = 0

In general, for M states and M creation operators, in mathematical terms one can speak of a
graded Z2 algebra with M generators.

Surprisingly, there is a generalization of the graded Z2 algebra well known from quantum
mechanics to a graded Z3 algebra which makes sense physically. To start from mathematics,
the graduation of generators θA of Z3 is established by distinguishing between elements θA of
grade 1, θAθB of grade 2, and θAθBθC of grade 3, the last one identified with grade 0. For this
graded Z3 algebra A a generalized Grassmann algebra holds,

θAθBθC = jθBθCθA = j2θCθAθB

1 including also annihilation operators, one ends up with a Heisenberg algebra.
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where j = e2πi/3 so that 1 + j+ j2 = 0 [8, 9, 10]. In addition, one can define a graded conjugate

Z3 algebra Ā with generators θ̄Ā of grade −1 (which, according to the graduation, is equivalent
to grade 2) with the property

θAθ̄B̄ = −jθ̄B̄θA

(note the minus sign on the right hand side). The graded (conjugate) Z3 algebras can be used
as model for (anti)quarks with three colours. The generators θA of grade 1 in this model can

be seen as quarks, the generators θ̄Ā of grade −1 as antiquarks, forming colour neutral mesonic
and baryonic states with grade 0. In the following we will analyse these mesonic and baryonic
forms for M = 2 and M = 3 generators [Kerner R ]

[].

3.1. Graded Z3 algebra with M = 2 generators
Using simple combinatorics we can determine how many independent elements are contained in
the zero-graded subalgebras A0, Ā0 and (A× Ā)0. There are

• (M3 −M)/3 independent elements in A0 and Ā0 (baryonic states),

• M2 independent elements in (A× Ā)0 (mesonic states).

In case of M = 2 (two flavours for instance) one has two 3-forms (baryonic states p, n) and four
2-forms (mesonic states π±, π0, ρ). As seen for the baryonic states, the generalized Grassmann
algebra implies that there are no three quarks in the same state. This restriction (no uuu and
ddd states, only uud (proton) and udd (neutron)) can be named accordingly as generalized Pauli
principle [11, 12]. Mathematically, these two possibilities are given by two independent choices
for the 3-form

ψα = ψαABCθ
AθBθC

Namely ψ1
121 = 1 (from which follows ψ1

211 = j and ψ1
112 = j2) and ψ2

212 = 1 (ψ2
122 = j,

ψ2
221 = j2). Claiming covariance under the transformation θA

′
= UA

′
A θA of the generators, the

corresponding 3-forms are related by ψ′ = Lψ where

Lα
′
α ψ

α
ABC = UA

′
A UB

′
B UC

′
C ψ′α

′
A′B′C′

The matrix

L =

(
L1′

1 L1′
2

L2′
1 L2′

2

)
=

(
U1′

1 −U1′
2

−U2′
1 U2′

2

)
detU

obeys detL = (detU)3 = 1. It turns out to be isomorphic to the covering SL(2, C) of the
Lorentz group. L is unitary but U is unitary only up to j and j2. This means that ψ transform
as a free spinor (baryon) but the generator transform as bounded spinors (quarks). Looking at
the mesonic states, there are four mixed 2-forms

ηµ = ηµ
AB̄
θAθ̄B̄

Due to the reality condition ηµ
AB̄
θAθ̄B̄ = η̄µ

B̄A
θ̄B̄θA one obtains ηµ

AB̄
= −j2η̄µ

B̄A
. One possible

representation (but not the only one) is via the Pauli spin matrices,

ηµ
AB̄

=
iσµ
AB̄√
2
, η̄µ

B̄A
= −j

iσ̄µ
B̄A√
2
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where σ0 is the 2× 2 unit matrix. Using the “spinorial metric”

ε12 = 1 = −ε21, ε1̄2̄ = 1 = −ε2̄1̄

the given representation makes it easy to see that

ηµν = ηµ
AB̄
ηνAB̄ = diag (+1;−1,−1,−1)

Surprising enough, we end up with the metric of flat space-time. One might speculate at this
point that the forms ηµ themselves are something like tetrad fields, for instance of the Poincaré
gauge theory of gravitation (see e.g. Ref. [13]). Correspondingly, under the transformation of

θA and θ̄B̄ one has to claim covariance of the form, η′ = Λη with

Λµ
′
µ η

µ
AB̄

= UA
′

A Ū B̄
′

B̄ η′µ
′

A′B̄′

This claim defines the 4× 4 Lorentz group with elements Λ for the Lorentz covariant 4-vector η.

3.2. Graded Z3 algebra for M = 3 generators
Given three generators Qa, one has eight 3-forms (baryonic states) and nine mixed 2-forms
(mesonic states). Analysing the transformation, it turns out that the 3-forms transform under
the adjoint representation of SU(3), the mixed 2-forms transform under the 3⊗ 3̄ representation
of SU(3), and the generators themselves transform under the fundamental representation of
SU(3), for a more detailed consideration we refer to [Kerner R arXiv:0901.3961].

4. Conclusions
We have seen that the graded Z3 algebra with M = 2 generators transform under the Lorentz
group while the algebra with M = 3 generators transform under the Lie group SU(3). Looking
at the whole stream of arguments, one can state that the group properties of the outer and inner
degrees of freedom emerge from a graded algebra originating from the Chebyshev polynomials
T3(φ) and associated with (confined) quark states.

4.1. First the hen, then the egg – or vice versa?
Concerning the Lorentz transformations, we obtain a new point of view for the relation between
the two representations [11, 12]. The traditional view (we call it “first the hen, then the egg”) is
that the Lorentz transformations x 7→ Λx (explicitly xµ 7→ x′µ = Λµνxν) and j → Λj with vector
currents

jµ = 〈ψ|γ|ψ〉 7→ j′µ = 〈ψ′|γµ|ψ′〉 = Λµν j
ν

lead to the Lorentz transformation ψ(x) 7→ ψ′(x′) = ψ′(Λx) = L(Λ)ψ(x). The new point of view
(“first the egg, then the hen”) states that the transformation of spinors

ψ(x)→ ψ′(x′) = ψ′(Λ(L)x) = Lψ(x)

is the primary transformation and the space-time transformation is the secondary one. This
makes sense from the mathematical point of view because the covering group SL(2, C) of the
Lorentz group as the larger group releases information to the particle–antiparticle symmetry in
covering the Lorentz group Λ of space-time.
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4.2. Outlook
The ideas presented here are linked with a lot of more directions to think which are not included
in this paper:

• Group theory seems to be the link between chaotic strings and quantum mechanics. This
link should be developed as an instrument to specify properties related to the minima of
the self energy of the chaotic strings.

• The considerations are done only for the Chebyshev polynomials which are the “motors” for
the chaotic strings. While iterated Chebyshev polynomials are related to chaotic strings at
coupling a = 0, these iterated polynomials are deformed for non-vanishing coupling a 6= 0,
resulting in a modification of the Galois group. It is intuitively clear that from this we
might obtain tetrad fields for a non-flat space-time and interactions between particles.

• As a link again between group theory and space-time emergence, quantum mechanics turns
out to be “space-timeless”. This point of view would support a quantum gravity in which
the geometry of space-time (via general relativity or possible generalizations) is founded on
quantum mechanics – and not vice versa (see, for instance, Ref. [14]).

In any case, new ideas are always welcome to our “think tank”.
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