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Abstract. Modular double of quantum group SLq(2,R) with |q| = 1 has a series of selfadjoint irreducible
representations πs parameterized by s ∈ R+. Ponsot and Teschner in [Comm. Math. Phys. 224 (2001) 613]
considered a decomposition of the tensor product πs1 ⊗ πs2 into irreducibles. In our paper we give more
detailed derivation and some new proofs.

1. Introduction
Conformal Field Theory is one of the main sources of quantum groups. The very first example
of deformed algebra Gq of functions on SL(2) was given by the monodromy matrix for the
quantized Lax operator of the Liouville model [1]. The variable τ , entering the deformation
parameter q = eiπτ played the role of the coupling constant. The duality τ → −1/τ observed
in [2, 3] was formalized in [4] in the notion of modular double.

The irreducible representations of the modular double of SLq(2,R), introduced in [4], were
investigated in [5, 6]. In particular in a remarkable paper [5] the problem of the decomposition
of the tensor product is solved.

There is an intriguing connection of the representations of the modular double of SLq(2,R)
and primary fields of the Liouville model. Both the representation πs of the modular double
and vertex operators Vα(x) = exp(αφ(x)) are labeled by the same number α = 1/2 + is, s > 0.
Apparently there should be a correspondence between the operator expansion of Vα1(x1)Vα2(x2)
and the decomposition of πs1 ⊗ πs2 into irreducibles. Some indications on such connection can
be found in [7]. However the work in this direction is still to be done. Having this in mind we
decided to rederive the results of the paper of Ponsot and Teschner [5] and supply more details
of derivations and proofs. Our paper is a complete exposition of the talks of the second author
(L.D.F) in the early summer of 2012. The first author (S.E.D) joined the company in the late
summer and his contribution let to important improvement of the full exposition.

2. Modular double of SLq(2,R)
The algebra has six generators, combined in two mutually commuting triplets E,F,K and
Ẽ, F̃ , K̃. The usual relations [8, 9] for E,F,K read

KE = q2EK, KF = q−2FK, EF − FE =
K −K−1

q − q−1

with q = eiπτ are supplemented by similar relations for Ẽ, F̃ , K̃ with q̃ = eiπ/τ . Generators
E,F,K and Ẽ, F̃ , K̃ commute. The coproduct is given by

∆(E) = E ⊗K + I ⊗ E, ∆(F ) = F ⊗ I +K−1 ⊗ F, ∆(K) = K ⊗K (2.1)
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and similarly for Ẽ, F̃ and K̃.
We shall use the irreducible representations which are equivalent to the used in [5, 6]. Let u

and v realize the Weyl relations uv = q2vu and act in L2(R) by the explicit formulae

uf(x) = exp
(
− iπx

ω

)
f(x), vf(x) = f(x+ 2ω′)

Here ω and ω′ are half-periods which substitute periods 1 and τ

τ = ω′/ω, ωω′ = −1/4, ω′′ = ω + ω′

We shall consider the case τ > 0, so that ω and ω′ are pure imaginary with positive imaginary
part. Operators u and v are unbounded and can be defined on the dense domain D consisting of
the entire functions f(x), rapidly vanishing at infinity along the lines Imx = const. For instance
we can take f(x) in the form

f(x) = e−αx
2
eβxP (x)

for positive α, arbitrary complex β and polynomial P (x). The operators u and v are nonnegative
and essentially selfadjoint.

The representation πs is given by formulae

E =
i

q − q−1
e(s), F =

i

q − q−1
f(s)

where

e(s) = u−1 (qv + Z) =
(
q−1v + Z

)
u−1, f(s) = u

(
1 + qZ−1v−1

)
=
(
1 + q−1Z−1v−1

)
u

and

Z = exp (−iπs/ω) , ∀s ∈ R, K = v.

The representation for the second triple is given by similar formulae in terms of ũ, ṽ and Z̃

ũ = u1/τ , ṽ = v1/τ , Z̃ = Z1/τ

so that

ũf(x) = exp (−iπx/ω′) f(x), ṽf(x) = f(x+ 2ω)

and Z̃ = exp (−iπs/ω′). Thus ũ, ṽ and Z̃ are obtained from u, v and Z by interchange ω � ω′.
Operators ũ, ṽ have the same domain and are nonnegative and essentially selfadjoint.
Let us note that there is the second regime for τ which could be called real form for SLq(2).

It is the case |τ | = 1 or ω′ = −ω̄. In this case the involution interchanges pairs u, v and ũ, ṽ
by u∗ = ũ, v∗ = ṽ. This regime has many interesting features. In particular it corresponds to
the value of central charge of Liouville model in the interval between 1 and 25. However in this
paper we shall consider only regime τ > 0.
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3. Modular quantum dilogarithm
We shall use this term for the function

γ(x) = exp

{
−1

4

∫ +∞

−∞

dt

t

eitx

sin(ωt) sin(ω′t)

}
where the contour goes above the singularity at t = 0. This function has long history, different
names, normalizations and applications. The normalization used in this paper is used in [10, 11].

The term modular quantum dilogarithm is used for the function

Φ(u) = γ(x), u = exp (−iπx/ω)

The adjective ”modular” is due to the symmetry of Φ(u) after exchange ω � ω′ and term
”dilogarithm” is due to the asymptotic for τ → 0

Φ(u)→ exp
1

2πiτ
Li2(−u)

where

Li2(u) =
∞∑
n=1

un/n2

containing the Euler dilogarithm. Finally ”quantum” is a conventional term for q-deformation.
The main property is the functional equation

Φ (qu)

Φ (q−1u)
=

1

1 + u
(3.1)

and similar one for the shift with q̃. In terms of function γ(x) these equations look as follows

γ(x+ ω′)/γ(x− ω′) = 1 + e−
iπ
ω
x, γ(x+ ω)/γ(x− ω) = 1 + e−

iπ
ω′ x

We shall need also the reflection formula

γ(x)γ(−x) = eiβeiπx
2
, β =

π

12

(
ω′

ω
+
ω

ω′

)
(3.2)

and formula for the complex conjugation

γ(x) = 1/γ(x) (3.3)

Asymptotic behaviour is γ(x)→ 1 for Re(x)→ +∞ and reflection formula (3.2) can be used to
get asymptotic for Re(x)→ −∞.

The function γ(x) has a pole at the point x = −ω′′ and zero at the point x = +ω′′. The first
terms of the series expansions are [10, 11, 14]

γ(−ω′′ + z) = − 1

2πic

1

z
+ . . . , γ(ω′′ + z) =

2πi

c
z + . . . (3.4)

Comparison of (3.2) and (3.4) gives

c2 = e−iβe−iπω
′′2

= ie2iβ, c = eiβ+
iπ
4

There are main integral identities [10, 11]∫
R

dte−2πitz
1

γ(ω′′ − i0− t)
= cγ(z − ω′′) (3.5a)∫

R
dte−2πitz

γ(x− t)
γ(ω′′ − i0− t)

= c
γ(x)γ(z − ω′′)
γ(x+ z)

(3.5b)∫
R

dte−2πitz
γ(x− t)γ(y − t)

γ(ω′′ − i0− t)γ(x+ y + z + ω′′ − i0− t)
= c

γ(x)γ(y)γ(z − ω′′)
γ(x+ z)γ(y + z)

(3.5c)
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3.1. Intertwining operator
Let us use the functional equation to show equivalence of the representations πs and π−s. We
should find an operator A(s) such that

e(s)A(s) = A(s)e(−s), f(s)A(s) = A(s)f(−s), vA(s) = A(s)v (3.6)

The last equation indicates that A(s) is an operator of convolution with kernel of the form

A(x, y, s) = A(x− y, s) =

∫ +∞

−∞
dte2πit(x−y)Â(t)

It is advisable to make Fourier transform. Let F be operator

[Ff ] (x) =

∫ +∞

−∞
dye−2πixyf(y) = f̂(x)

We have uF = Fv and vF = Fu−1 and after conjugation by F we get from (3.1)

v−1
(
qu−1 + Z

)
Â(u) = Â(u)v−1

(
qu−1 + Z−1

)
v
(
1 + qZ−1u

)
Â(u) = Â(u)v (1 + qZu)

We move v−1 and v to the right and cancel. After that we obtain the equations(
q−1u−1 + Z

)
Â(q2u) = Â(u)

(
q−1u−1 + Z−1

)(
1 + q−1Z−1u

)
Â(q−2u) = Â(u)

(
1 + q−1Zu

)
which are equivalent and differs by the change u→ q2u so that really we have only one equation

(1 + qZu) Â(q2u) = Â(u)
(
1 + qZ−1u

)
It is evident that solution of this equation is

Â(u) =
Φ(Zu)

Φ(Z−1u)

and finally

A(s) = F−1
Φ(Zu)

Φ(Z−1u)
F (3.7)

The unitarity of the operator A(s) is evident due to (3.3).

4. The main equation for the 3j-symbol
In this section we shall solve the system of equations for the function S(x1, x2, x3|s1, s2, s3)

e12(s1, s2)S = e′3(s3)S (4.1a)

f12(s1, s2)S = f ′3(s3)S (4.1b)

K12S = K ′3S (4.1c)

where the operators e12, f12 and K12 act on variables x1 and x2 by

∆(E) = E12 = E1K2 + E2, ∆(F ) = F12 = F1 +K−11 F2, ∆(K) = K12 = K1K2
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and e′3, f
′
3,K

′
3 acts on variable x3. These operators can be obtained from the transposition

u′ = u, v′ = v−1 and are given by K ′3 = v−13 ,

e′3 =
(
Z3 + qv−13

)
u−13 = u−13

(
Z3 + q−1v−13

)
, f ′3 =

(
1 + qZ−13 v3

)
u3 = u3

(
1 + q−1Z−13 v3

)
It is already clear that function S realizes the decomposition of the representation πs1 ⊗πs2 into
irreducibles. More will be said in the end of the section.

Following the previous section we shall often use variables ui instead of xi. Equation (4.1c),

v1v2v3S = S (4.2)

allows to exclude v2 from the equation (4.1a) and v−12 from the equation (4.1b) to get the system
of equations for v−11 S/S and v3S/S as follows:(

u2 + qZ−11 u1
)
v−11 S +

(
qZ−12 u2 − q−1Z−13 u3

)
v3S = (u3 − u1)S(

Z1u
−1
1 + qu−12

)
v−11 S +

(
Z2u

−1
2 − q

2Z3u
−1
3

)
v3S = qu−11 u−13 (u1 − u3)S

or after diagonalization

v−11 S

S
= qZ1

u1 − u3
Z1u3 + qZ2Z3u1

u2 − Z2Z3u1
qu1 + Z1u2

,
v3S

S
= qZ2Z3

u1 − u3
Z1u3 + qZ2Z3u1

qu2 + Z1u3
Z2u3 − qZ3u2

More explicitly these equations read

S(q2u1, u2, u3) =
1

Z2Z3

1− u3
u1

1 + Z1
qZ2Z3

u3
u1

1− Z2Z3
u1
u2

1 + q
Z1

u1
u2

S(u1, u2, u3)

S(u1, u2, q
−2u3) =

Z1

Z2

1− u3
u1

1 + Z1
qZ2Z3

u3
u1

1 + q
Z1

u2
u3

1− qZ3

Z2

u2
u3

S(u1, u2, u3)

and can be supplemented by

S
(
u1, q

−2u2, u3
)

=
1

Z1Z3

1− Z2Z3
u1
u2

1 + q
Z1

u1
u2

1− Z3
qZ2

u2
u3

1 + 1
qZ1

u2
u3

S(u1, u2, u3)

which is a corollary of (4.2). Let us look for solution in the form

S =
Φ
(
α1

u2
u3

)
Φ
(
α2

u3
u1

)
Φ
(
α3

u1
u2

)
Φ
(
β1

u2
u3

)
Φ
(
β2

u3
u1

)
Φ
(
β3

u1
u2

) S1 (4.3)

and due to (3.1) the choice

α1 = −qZ3Z
−1
2 , α2 = −q, α3 = Z−11 , β1 = Z−11 , β2 = Z1Z

−1
2 Z−13 , β3 = −Z2Z3q

−1

reduces the equations to

S1(q
2u1, u2, u3) = Z−12 Z−13 S1(u1, u2, u3)

S1(u1, u2, q
−2u3) = Z1Z

−1
2 S1(u1, u2, u3)

S1
(
u1, q

−2u2, u3
)

= Z−11 Z−13 S1(u1, u2, u3)
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The dual equations, corresponding to the interchange ω � ω′, have the same solution (4.3) and
after that the Ansatz

S1(x1, x2, x3) = exp−2πi (s1x23 + s2x31 + s3x21)S0(x1, x2, x3)

where xik = xi−xk, reduce the freedom to double periodic function S0, which has to be constant.
Thus the solution of the equations (4.1) is given by

S(x1, x2, x3) = S0 exp−2πi (s1x23 + s2x31 + s3x21)×

× γ(x12 − s1)
γ(x12 + s2 + s3 + ω′′)

γ(x23 + s3 − s2 − ω′′)
γ(x23 − s1)

γ(x31 − ω′′)
γ(x31 + s1 − s2 − s3)

(4.4)

The appearance of ω′′ is due to sign factors in (4.3),

−qu = exp
(
− iπ(x−ω′′)

ω

)
and the singularities here have to be understood as ω′′ → ω′′− i0, which will be explained in the
course of the proof of completeness. The expression for S, equivalent to (4.4), was given in [5]
without derivation.

Now we can interpret the result in more details. The solution exists for any triplet of real
s1, s2, s3 and is unique up to normalization constant. This means that the representation with
”spin” s3 enter the tensor product πs1 ⊗ πs2 once for any s3. This can be formalized by the
relation

πs1 ⊗ πs2 =

∫ +∞

0
ds3ρ(s3)πs3 (4.5)

We can consider S (x1x2x3) as the kernel of the integral operator S defined by

πs3
S−→ πs1 ⊗ πs2 , f(x3) 7→ [Sf ] (x1, x2) =

∫
R

dx3S (x1x2x3) f(x3)

and equations (4.1) in operator form are

e12S = Se3, f12S = Sf3, K12S = SK3 (4.6)

The complex conjugate function S (x1x2x3) has interpretation as the kernel of the projection
operator

πs1 ⊗ πs2
P−→ πs3 , f(x1, x2)

P−→ [Pf ] (x) =

∫
R2

dx1dx2S (x1x2x)f(x1, x2)

The measure ρ(s) in (4.5) should be found from normalization condition for the kernel
S(x1, x2, x3), which will be obtained in the last section.

5. Undressing of the Casimir
To get the normalization for S it is useful to interpret it as an eigenfunction of the Casimir
operator

C12 = f12e12 − qK12 − q−1K−112
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It is clear from (4.6), that as a function of x1 and x2, S satisfies the equation

C12S =
(
Z3 + Z−13

)
S

where s3 and x3 play the role of parameters labeling eigenvalue and multiplicity.
Explicitly C12 can be written as

C12 = Z2
u1
u2

+ Z−12

u2
u1

+

(
Z1 +

1

q

u2
u1

)(
1 +

q

Z1

u1
u2

)
v2 +

(
Z2 +

Z1

qZ2

u2
u1

)(
1 +

q

Z1

u1
u2

)
v−11

+
Z1

q2
u2
u1

(
1 +

q

Z1

u1
u2

)(
1 +

q3

Z1

u1
u2

)
v−11 v2

or

C12 = Z2
u1
u2

+ Z−12

u2
u1

+

(
Z1 +

1

q

u2
u1

)
V2 +

(
Z2 +

Z1

qZ2

u2
u1

)
V −11 +

Z1

q2
u2
u1
V −11 V2

offer the substitution

V1 = v1
1

1 + q
Z1

u1
u2

, V2 =

(
1 +

q

Z1

u1
u2

)
v2

We shall introduce a series of adjoint transformations of C12 to reduce it to more simple form.
These transformations we shall call ”undressing”.

The first step is to use operator R1 to cancel factors in front of v1 and v2

R−11 V1R1 = v1, R−11 V2R1 = v2

The solution is a multiplication operator by function

R1 = Φ

(
1

Z1

u1
u2

)
The operator K12 is invariant under transformation by R1, i.e R−11 K12R1 = K12 and C12

transforms into

C ′12 = R−11 C12R1 = Z2
u1
u2

+ Z1v2 + Z2v
−1
1 + Z−12 u−11

(
1 + q−1Z1v

−1
1

)
U2

where

U2 = u2
(
1 + q−1Z2v2

)
Now we find R2 transforming U2 to u2, i.e R−12 U2R2 = u2. It is clear that R2 is similar to R1

after interchange u2 and v2, which is given by the Fourier transformation which respect variable
x2, so that R2 = F−12 R̃2F2 where R̃2 is a multiplication by Φ(Z2u2). The operator K12 is
invariant under transformation R2 and operator C ′12 acquires the form

C ′′12 = R−12 C ′12R2 = Z2
u1
u2

+
1

Z2

u2
u1

+ Z1V
′
2 +

Z1

qZ2

u2
u1
V ′−11

where

V ′1 = v1
1

1 +
qZ2

2
Z1

u1
u2

, V ′2 =

(
1 +

qZ2
2

Z1

u1
u2

)
v2
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Now we transform V ′1 and V ′2 to v1 and v2 by multiplication operator

R3 = Φ

(
Z2
2

Z1

u1
u2

)
which leaves K12 invariant and transform C ′′12 into

C̃12 = R−13 C ′′12R3 = Z2
u1
u2

+
1

Z2

u2
u1

+ Z1v2 +
Z1

qZ2

u2
u1
v−11

Altogether the operator A = R1F
−1
2 R̃2F2R3 gives C̃12 from C12 and leaves K12 invariant,

C̃12 = A−1C12A, A−1K12A = K12

In more explicit form A−1 acts on the function of two variables f(x1, x2) as follows:

[
A−1f

]
(x1, x2) =

1

cγ(x12 − s1 + 2s2)

∫
R

dte2πit(s2−ω
′′)γ(−t− ω′′ + i0)

γ(x1 − t− s1)
f(x1, t) (5.1)

Operator C̃12 is much more simple then C12 and the problem of simultaneous diagonalization
of C̃12 and K12 allows separation of variables. Consider equations for the corresponding
eigenfunctions

K12Ψp(x1, x2) = v1v2Ψp(x1, x2) = e
iπp
ω Ψp(x1, x2)(

Z2
u1
u2

+
1

Z2

u2
u1

+ Z1v2 +
Z1

qZ2

u2
u1
v−11

)
Ψp(x1, x2) =

(
Z3 + Z−13

)
Ψp(x1, x2)

where we parameterize the eigenvalues by p and s3. The first equation allows to exclude v−11
from the second to get[

Z2
u1
u2

+
1

Z2

u2
u1

+ Z1

(
1 +

e−
iπp
ω

qZ2

u2
u1

)
v2

]
Ψp(x1, x2) =

(
Z3 + Z−13

)
Ψp(x1, x2)

The general solution of the first equation is given by

Ψp(x1, x2) = e−2πipx1Ψp(x21)

where x21 = x2 − x1 and after substitution

Ψp(x21) =
e−2πis1x21

γ(x21 + p− s2)
Ψ(x21)

which eliminates the factor in front of v2, we get(
Z2
u1
u2

+
1

Z2

u2
u1

+ v2

)
Ψ(x21) =

(
Z3 + Z−13

)
Ψ(x21)

Introducing the new operators

u =
1

Z2

u2
u1
, v = v2
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we rewrite the remaining equation in the form(
v + u+ u−1

)
Ψ =

(
Z3 + Z−13

)
Ψ

The operator in the LHS is well known in CFT. It appears as a trace of monodromy of Lax
operator in the Liouville model [1]. In quantum Teichmüller thery it got the name of the length
operator for geodesics. R. Kashaev has shown [12, 13] that this operator has continues spectrum
in the interval [2,∞] with eigenvalues parameterized in the form Z + Z−1 with

Z = exp
(
− iπs

ω

)
, s ≥ 0

and eigenfunctions are given by

φ(x, s) = e−iπ(x−ω
′′)2γ(x+ s− ω′′ + i0)γ(x− s− ω′′ + i0) (5.2)

The latter are even functions of s so that these can be considered for any s ∈ R. Kashaev
proved [12] the orthogonality and completeness for φ(x, s) in the form∫

R
dxφ(x, s)φ(x, s′) = ρ−1(s)

[
δ(s− s′) + δ(s+ s′)

]
(5.3)∫ +∞

0
dsρ(s)φ(x, s)φ(y, s) = δ(x− y) (5.4)

with ρ(s) given by

ρ(s) = M(s)M(−s) = −4 sin
πs

ω
sin

πs

ω′

where M(s), which can be considered as analogue of the Jost function from scattering theory or
Harish-Chandra-Gindikin-Karpelevich function from the theory of representations of SL(2,R),
can be taken as

M(s) = ce−2iπs
2−2iπsω′′

γ(2s+ ω′′)

One can say that the operator

[Uf ] (s) =

∫ +∞

−∞
dxM(s)φ(x, s)f(x) = F (s)

acts from L2(R) into the subspace of L2(R), defined by condition F (s) = S(s)F (−s) where
the reflection coefficient S(s) is given by S(s) = M(s)/M(−s). Incidentally, the same reflection
coefficient appears in the discussion of the zero modes in the Liouville model in [15].

It is evident that integral operator P with the kernel

P (s, s′) =
1

2

[
δ(s− s′) + S(s)δ(s+ s′)

]
defines a projection and U maps L2(R) into subspace PL2(R). However the natural completeness∫ +∞

−∞
dsds′P (s, s′)U(x, s)U(y, s′) = δ(x− y)

reduces to (5.4) due to the fact, that φ(x, s) is an even function of s and property M(s) = M(−s).
The inversion s→ −s is evidently connected to the Weyl reflection. The proof of Kashaev results
is given in Appendix.

After all we obtain the following expression for the eigenfunction of the undressed Casimir
operator

Ψp(x1, x2) = e−2πipx1
e−2πis1x21

γ(x21 + p− s2)
φ(x21 − s2, s3) (5.5)

and now we can use them to formulate the orthogonality and completeness for the kernel
S(x1, x2, x3).
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6. Undressing of the eigenfunctions
First of all we have to find out the connection between Ψp(x1, x2) and undressed eigenfunction
A−1S(x1, x2, x3). The explicit expression for the undressed eigenfunction reads

A−1S(x1, x2, x3) = S0c
−1e−2πi(s1x23+s2x31+s3x21)

1

γ(x12 − s1 + 2s2)

γ(x31 − ω′′)
γ(x31 + s1 − s2 − s3)

×

×
∫
R

dte2πit(s2−s1−s3−ω
′′)γ(−t− ω′′ + i0)γ(t− x3 + s3 − s2 − ω′′ + i0)

γ(x1 − t+ s2 + s3 + ω′′ + i0)γ(t− x3 − s1)

where undressing operator A−1 is given by (5.1). The t-integral is reduced to (3.5c) and can be
calculated in explicit form so that we obtain

A−1S(x1, x2, x3) = S0e
2πiω′′2 e−iπ(s2−s1+s3)

2

γ(s2−s1−s3)
e2πi(s1+s3)x12

γ(x12+s2+s3+ω′′)

e2πi(ω
′′−s3)x13γ(x23+s3−s2−ω′′)

γ(x13 + ω′′)

Next step is the calculation of Fourier transformation with respect variable x3 using (3.5b):

Sp(x1, x2) =

∫
R

dx3e
−2πipx3A−1S(x1, x2, x3)

= S0e
2πiω′′2 e−iπ(s2−s1+s3)

2

γ(s2 − s1 − s3)
e2πi(s1+s3)x12

γ(x12 + s2 + s3 + ω′′)
×

× e−2πipx1
∫
R

dte−2πit(p−s3+ω
′′)γ(x21 + s3 − s2 − ω′′ + i0− t)

γ(ω′′ − i0− t)

= S0e
2πiω′′2

c
e−iπ(s2−s1+s3)

2
γ(p−s3)

γ(s2 − s1 − s3)
e−2πipx1

γ(x21 − s2 + p)

e2πi(s1+s3)x12γ(x21+s3−s2−ω′′)
γ(x12+s2+s3+ω′′)

This expression coincides with (5.5),

Sp(x1, x2) = Z(s1, s2|s3, p)Ψp(x1, x2)

up to overall normalization Z(s1, s2|s3, p),

Z(s1, s2|s3, p) = S0ie
2πiω′′2 e−iπs

2
3−2πis3(s2+ω′′)−iπ(s2−s1+s3)2γ(p− s3)

γ(s2 − s1 − s3)

The special choice of the initial normalization constant S0 given by

S0 = −ie−2πiω′′2
eiπs

2
3+2πis3(s2+ω′′)+iπ(s2−s1+s3)2γ(s2 − s1 − s3) = e2πis3ω

′′
eiφ (6.1)

where φ is real phase, leads to simplification

Z(s1, s2|s3, p) = γ(p− s3)

so that we obtain properly normalized eigenfunctions

Sp(x1, x2) = e2πis3pγ(p− s3)
e−2πipx1

γ(x21 − s2 + p)
e−2πis1x21φs3(x21 − s2) (6.2)
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Now we shall prove the orthogonality and completeness of the functions S(x1, x2, x3) in the
momentum representation

S(x1, x2, p) =

∫
R

dx3e
−2πipx3S(x1, x2, x3)

It will be sufficient to prove the orthogonality and completeness for the undressed eigenfunctions
Sp(x1, x2) because the dressed eigenfunction S(x1, x2, p) = ASp(x1, x2) is obtained from the
Sp(x1, x2) after action of the dressing unitary operator A. Due to unitarity this dressing operator
effectively cancels out from considered relations.

Let us begin from orthogonality. There the dressing operator A cancels out on the first step∫
R2

dx1dx2S (x1x2q)S (x1x2p) =

∫
R2

dx1dx2Sq (x1x2)Sp (x1x2)

=
γ(p− s)
γ(q − s′)

∫
R2

dx1dx2e
−2πi(p−q)x1 γ(x21 − s2 + q)

γ(x21 − s2 + p)
φ(x21 − s2, s′)φ(x21 − s2, s)

= δ(p− q) γ(p− s)
γ(p− s′)

∫
R

dxφ(x, s′)φ(x, s)

= ρ−1(s)δ(p− q)
[
δ(s− s′) + δ(s+ s′)

γ(p− s)
γ(p+ s)

]
Note that the appearance of the second term containing δ (s+ s′) and kernel of the intertwining
operator (3.7) is the direct consequence of the equivalence of representations πs and π−s.

The completeness for the undressed eigenfunction can be proven as follows∫ +∞

0
dsρ(s)

∫
R

dpSp (x′1x
′
2)Sp (x1x2) =

∫
R

dpe−2πip(x1−x
′
1)
γ(x′21 − s2 + p)

γ(x21 − s2 + p)
×

×
∫ +∞

0
dsρ(s)φ(x′21 − s2, s)φ(x21 − s2, s)

=

∫
R

dpe−2πip(x1−x
′
1)
γ(x′21 − s2 + p)

γ(x21 − s2 + p)
δ(x′21 − x21)

= δ(x′1 − x1)δ(x′2 − x2)

Due to unitarity of the dressing operator the same relation holds for the dressed eigenfunctions,∫ +∞

0
dsρ(s)

∫
R

dpS (x′1x
′
2p)S (x1x2p) = δ(x′1 − x1)δ(x′2 − x2)

Appendix A. Orthogonality and completeness of Kashaev eigenfunctions
We shall need the generalization of identity (3.5b) in the form∫

R
dte−2πits

γ(t+ a)

γ(t+ b)
= ce2πis(b−ω

′′)γ(a− b+ ω′′)γ(−s− ω′′)
γ(a− b− s+ ω′′)

(A.1)

= c−1e2πis(a+ω
′′) γ(b− a+ s− ω′′)
γ(b− a− ω′′)γ(s+ ω′′)

(A.2)

where the integral converges under conditions

Im(s) < 0, Im(a− b− s) < 0 (A.3)
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The inverse formula is

γ(t+ a)

γ(t+ b)
=

1

cγ(b− a− ω′′)

∫
R

dse2πis(t+a+ω
′′)γ(s+ b− a− ω′′)

γ(s+ ω′′)
(A.4)

and the contour goes below the singularity at s = 0.

Appendix A.1. Orthogonality
We take eigenfunctions in the form

φ(x, λ) = e−iπ(x−ω
′′)2γ(x+ λ− ω′′)γ(x− λ− ω′′)

so that

φ(x, λ)φ(x, µ) = e4πixω
′′ γ(x+ µ− ω′′)γ(x− µ− ω′′)
γ(x+ λ+ ω′′)γ(x− λ+ ω′′)

and the singularities here have to be understood as ω′′ → ω′′ − i0 We have to calculate

I(λ, µ) =

∫
R

dxφ(x, λ)φ(x, µ)

This function is even in λ and µ and it is sufficient to calculate it in one quadrant, say λ > 0
and µ < 0. First we transform the ratio of two γ-functions using (A.4),

γ(x+ µ− ω′′)
γ(x+ λ+ ω′′)

=
1

cγ(λ− µ+ ω′′)

∫
R

dse2πis(x+µ)
γ(s+ λ− µ+ ω′′)

γ(s+ ω′′)

and calculate the x-integral using (A.2),∫
R

dxe2πix(s+2ω′′)γ(x− µ− ω′′)
γ(x− λ+ ω′′)

= c−1e2πiµ(s+2ω′′) γ(µ− λ− s− ω′′)
γ(µ− λ+ ω′′)γ(−s− ω′′)

and after these two steps arrive to the following expression for I(λ, µ):

I(λ, µ) =
1

c2γ(λ− µ+ ω′′)γ(µ− λ+ ω′′)

∫
R

dse4πisµ
γ(s+ λ− µ+ ω′′)γ(µ− s− λ− ω′′)

γ(s+ ω′′)γ(−s− ω′′)
The ratio of γ-functions is reduced to the simple exponent

γ(s+ λ− µ+ ω′′)γ(µ− s− λ− ω′′)
γ(s+ ω′′)γ(−s− ω′′)

= eiπ(s+λ−µ+ω
′′)2−iπ(s+ω′′)2

due to reflection relation (3.2) so that we obtain for λ > 0 and µ < 0

I(λ, µ) =
eiπ(λ−µ)

2+2iπω′′(λ−µ)

c2γ(λ− µ+ ω′′)γ(µ− λ+ ω′′)

∫
dse2iπs(λ+µ)

=
e4iπλ

2+4iπλω′′

c2γ(2λ+ ω′′)γ(−2λ+ ω′′)
δ(λ+ µ)

The full answer is restored by the symmetry∫
R

dxφ(x, λ)φ(x, µ) =
1

M(λ)M(−λ)
[δ(λ− µ) + δ(λ+ µ)]

where

M(λ) = ce−2iπλ
2−2iπλω′′

γ(2λ+ ω′′)

It is exactly the formula (5.3) with

ρ(λ) = M(λ)M(−λ) = e−4πiλω
′′ γ(2λ+ ω′′)

γ(2λ− ω′′)
=
(
e
iπλ
ω − e−

iπλ
ω

)(
e
iπλ
ω′ − e−

iπλ
ω′
)
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Appendix A.2. Completeness
Now we have to calculate

I(x, y) =

∫ +∞

0
dλρ(λ)φ(x, λ)φ(y, λ) =

∫ +∞

−∞
dλσ(λ)φ(x, λ)φ(y, λ)

where we used the symmetry λ→ −λ,

ρ(λ) = σ(λ) + σ(−λ), σ(λ) = e−4πiλω
′′ − e−4πiλ(ω′′−2ω′)

We introduce regularization and obtain the following expression

I(x, y) = eiπ(x
2−y2)−2iπ(x−y)ω′′

∫
R

dλσ(λ)e2πλδ
γ(y + λ− ω′′ + iε)γ(y − λ− ω′′ + iε)

γ(x+ λ+ ω′′ − iε)γ(x− λ+ ω′′ − iε)

where ε > 0, δ > 0 and δ > 2ε. First we transform the ratio of γ-functions using (A.4),

γ(y + λ− ω′′ + iε)

γ(x+ λ+ ω′′ − iε)
=

1

cγ(x− y + ω′′ − 2iε)

∫
R

dse2πis(y+λ+iε)
γ(s+ x− y + ω′′ − 2iε)

γ(s+ ω′′)

where the contour goes below the singularity at s = 0. Let us consider the λ-integral with the
first contribution in σ(λ) and for convenience make the change of the variable λ→ −λ,

I1(s) =

∫
dλe−2πiλ(s−2ω

′′+iδ) γ(y + λ− ω′′ + iε)

γ(x+ λ+ ω′′ − iε)

The second condition in (A.3) is fulfilled due to relation δ > 2ε and using (A.2) we obtain

I1(s) = c−1e2πi(y+iε)(s−2ω
′′+iδ) γ(x− y + s− ω′′ + i(δ − 2ε))

γ(x− y + ω′′ − 2iε)γ(s− ω′′ + iδ)

The same calculation with the second contribution in σ(λ) gives

I2(s) =

∫
dλe−2πiλ(s−2ω+2ω′+iδ) γ(y + λ− ω′′ + iε)

γ(x+ λ+ ω′′ − iε)

= c−1e2πi(y+iε)(s−2ω+2ω′+iδ) γ(x− y + s+ ω′′ − 2ω + 2ω′ + i(δ − 2ε))

γ(x− y + ω′′ − 2iε)γ(s+ ω′′ − 2ω + 2ω′ + iδ)

The change of variables s→ s−2ω′ in s-integral containing I2(s) transforms ratio of s-dependent
γ-functions to the form

γ(x− y + s+ ω − ω′ − 2iε)

γ(s+ ω − ω′)
γ(x− y + s− ω + ω′ + i(δ − 2ε))

γ(s− ω + ω′ + iδ)

where we restored s-dependent γ-functions from the first stage. In the corresponding s-integral
containing I1(s) there is the following ratio of s-dependent γ-functions

γ(x− y + s+ ω′′ − 2iε)

γ(s+ ω′′)

γ(x− y + s− ω′′ + i(δ − 2ε))

γ(s− ω′′ + iδ)

The formula

γ(z + ω − ω′)γ(z − ω + ω′) = γ(z + ω′′)γ(z − ω′′)
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allows to transform one expression to another for δ = 0. It means that in situation when it is
possible to skip δ-regularization, we obtain the integral over closed contour. Let us deform the
contour in integral with I1(s): the contour which goes above the singularity at s = 0 and a small
closed contour around s = 0 leading to additional contribution

2πiRess=0 =
1

c

γ(x− y + ω′′ − 2iε)γ(x− y − ω′′ − 2iε+ iδ)

γ(−ω′′ + iδ)

In the remaining two integrals it is possible to put δ = 0 and therefore to reduce it to the integral
over closed contour without any singularity inside. As a result only the term 2πiRess=0 leads
to nonzero contribution and restoring all needed factors we obtain

cγ(x− y − ω′′ − 2iε+ iδ)

γ(x− y + ω′′ − 2iε)γ(−ω′′ + iδ)
→ 1

2πi

iδ

(x− y − 2iε)(x− y + iδ − 2iε)
→ δ(x− y)

so that∫ +∞

0
dλρ(λ)φ(x, λ)φ(y, λ) = δ(x− y)
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