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Abstract. This paper presents the results of computations of incompressible flows performed 

with a high-order compact scheme and the immersed boundary method. The solution algorithm 

is based on the projection method implemented using the half-staggered grid arrangement in 

which the velocity components are stored in the same locations while the pressure nodes are 

shifted half a cell size. The time discretization is performed using the predictor-corrector 

method in which the forcing terms used in the immersed boundary method acts in both steps. 

The solution algorithm is verified based on 2D flow problems  (flow in a lid-driven skewed 

cavity, flow over a backward facing step) and turns out to be very accurate on computational 

meshes comparable with ones used in the classical approaches, i.e. not based on the immersed 

boundary method. 

1. Introduction 

Undoubtedly, from the point of view of a solution accuracy none of the discretization method may 

compete with the spectral and pseudo-spectral methods which are regarded as the most accurate [1]. 

The weak point of these approaches is that they can be applied in rather simple computational domains 

and with the nodes distribution and boundary conditions enforced by the type of the method. For 

instance, the spectral method based on the Fourier series is suited for periodic problems with the 

uniform mesh points distribution. On the other hand the pseudospectral method based on the 

Chebyshev polynomials is used mainly in cases which require good resolutions near boundaries, e.g. 

the wall bounded flows. In this view the high-order compact difference methods [2] seem to be very 

attractive giving much more possibilities regarding non-uniformity of the computational meshes, 

selection of the boundary conditions or shapes of computational domains. Although the compact 

methods cannot compare with flexibility of the finite volume or finite element based methods, they are 

successfully applied on non-uniform meshes and in irregular domains [3,4,5]. However, this is not a 

trivial task and often requires domain division, normalisation, co-ordinate transformations, etc. 

Possibly the easiest solution allowing to use the compact methods in complicated domains is to 

combine them with the so-called Immersed Boundary (IB) method. Application of this approach seems 

to be relatively easy and very efficient [6]. The Navier-Stokes equations are solved on Cartesian regular 

grids with arbitrary boundaries or arbitrary objects embedded directly on the grid points. The influence of 

such objects on the flow field is enforced by body force terms added to the Navier-Stokes equations [6,7]. 

The present work focuses on combination of high-order compact method with IB approach for 

incompressible flows within a framework of the projection method.  

It is known that the high-order methods are prone to instabilities near discontinuities or sharp gradients. In 

the case of IB method such a behaviour could be expected in the vicinity of walls introduced into the flow 

domain. This paper shows that these problems are very narrowed and practically do not influence the 
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results. The solution algorithm is validated in enclosed and partially open geometries based on two 

classical test cases, a flow in a lid-driven skewed cavity and a flow over a backward facing step. 

The paper is organised as follow: the governing equations and the solution algorithm are presented in the 

next section together with details of IB approach. Section 3 presents the results of simulations which are 

followed by conclusions and future outlook. 

2. Mathematical model and numerical algorithm 

Fluid flow of an incompressible fluid is governed by the continuity equation and Navier-Stoqes 

equations given as: 
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where ui  are velocity components, ρ is density, p - pressure, ν - kinematic viscosity and fIB denotes a 

source term which will be used to force zero values of velocity at the domain boundaries. We consider  

flow problems with constant fluid properties, i.e., constant density and viscosity. 

2.1 Description of the flow solver 

The set of equations (1-2) is solved using the numerical code (SAILOR) which is an academic high-

order flow solver based on the low Mach number approximation [8,9]. This code may be used for 

solving a wide range of flows under various conditions, varying from isothermal and constant density 

to situations with considerable density and temperature variations. The SAILOR code was used 

previously in various studies including laminar/turbulent transition in near-wall flows [10] free jet 

flows [11,12], multi-phase flows [13] and flames [14,15]. The solution algorithm used in the SAILOR 

code for the case constant density flows is presented in the next subsection. The spatial discretization 

is based on 6th order compact differencing developed for half-staggered meshes [16]. ‘Figure 1’ 

shows locations of the velocity and pressure nodes. Unlike in the fully staggered approach the velocity 

nodes are common for the velocity components whereas the pressure nodes are moved half a grid size 

from the velocity nodes. This is computationally efficient as there is only a small amount of 

interpolation between the nodes.  As shown in [16] the staggering of the pressure nodes is sufficient to 

ensure a strong velocity-pressure coupling which eliminates the well known pressure oscillations 

occurring on collocated meshes.  

The solution algorithm in the SAILOR code is based on the projection method in which the pressure is 

computed from the Poisson equation. The time advancement of equation (2) is performed with a 

predictor-corrector method with help of the 2nd order Adams-Bashforth and Adams-Moulton 

methods.  

 

The predictor step is given as: 

 the Navier-Stokes equations are solved as: 
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 where Res(u
n
) represents the convection and diffusion terms. The upper scripts denote the time 

 level t and t=t-Δt where Δt is the time step. The pressure gradient is computed based on the 

 previous time step. Evaluation of the source term is discussed later in Sec. 2.2.  

 in general, the velocity field u* obtained from equation (3) is not divergence free and need to be 

corrected; the projection method assumes that the velocity is corrected by pressure gradient as:  
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(4) 

 requirement DIV(u**)=0 leads to the Poisson equation for the pressure given as: 

 

 

   
 
   

   
  

 

  

   
 

   
 

 

 

(5) 

 where p' is the pressure correction. Solution of equation (5) allows to correct the velocity 

according to equation (4). 

 

The corrector step is given as: 

 

 the Navier-Stokes equations in the corrector step are solved with semi-implicit method with the 

velocity at the time step t=t+Δt assumed equal to u**; hence, the corrector step starts by 

advancing in time the equation: 

  
    

 

  
 
 

 
                   

 

 

   

   
     

 

(6) 

 similarly as in the predictor step the velocity must be corrected using:  

  
      

    
 

 

   

   
 

 

(7) 

where the pressure corrections is obtained from the Poisson equation resulting from substitution  of 

equation  (6)  into DIV(u
n+1

)=0. The resulting Poisson equation has the same form as equation (5). 

Solving it for the pressure correction p' allows to correct the velocity using equation (7), and to update 

the pressure as p
n+1

=p
n
+p'.  

2.2 Immersed Boundary (IB) method  

The high-order discretisation method applied in the SAILOR code limits its use to the cases with 

rather simple geometries such as straight or smoothly diverging ducts and channels with smooth 

bumps. Application of IB method aims to extend applicability of the SAILOR code to the flow 

problems with almost arbitrary non-rectangular domains and cases with flows around objects 

embedded inside the computational domains.  

The algorithm presented in the previous section did not include the forcing term present in 

equation (2). In general there are two options of the IB method called feedback forcing method [17] 

and direct forcing method [6]. They differ in evaluation of the forcing term. In this work the latter 

approach is implemented which seems to be simpler and more efficient. Interested reader is referred to 

[18] where all details and variants of IB methods may be found. Here we limit ourselves to explain 

how the term  is computed. In the predictor step it is defined as:    
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where the symbol  uWALL stands for the velocity at the wall which is a part of the computational domain 

as shown in ‘figure 1’ by black sold line. The velocity on that boundary is known and this allows to 

estimate the values of velocity in its closest vicinity, i.e., in the computational nodes shown in ‘figure 

1’ by black squares. In the present approach the velocity in these nodes is obtained from the 2nd order 

linear interpolation based on the velocity values from the second node line from the boundary (shown 

by high arrow in ‘figure 1’) and the desired boundary values. As will be shown later, although the 2nd 

order interpolation locally reduces the formal approximation order it does not influence significantly 

on the results far from the immersed boundaries. Inside the immersed body, i.e., in the nodes with 
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crosses the velocity is forced to a given velocity of the body. In the test cases presented in the next 

section we assume stationary bodies, however it should be clear that the IB method allows to simulate 

moving objects as well. We note that in the corrector step the source term is evaluated similarly but 

based on equation (6). 

 

 

Figure 1. Linear velocity interpolation method. 

3. Results 

Correctness of the high-order code combined with IB method is verified based on 2D flow problems 

commonly used in literature as exemplary test cases: a flow inside a lid-driven skewed cavity [19] and 

a flow over a backward-facing step [20]. The literature data [19, 20] used as the reference solutions 

were obtained using the classical approach, i.e., with the computational meshes fitted with domain 

boundaries. Although, the following validation has been performed only for 2D steady state cases it 

clearly confirms very large potential of IB method. 

3.1 Flow inside a skewed cavity            

The flow domain for this test case is shown in ‘figure 2’. The angle at which the cavity leans is equal 

α=135°. The dimensions of the cavity were normalized using the length of the upper wall (L) whereas  

the velocity field was normalized by the horizontal velocity (U) of that wall. The computations were 

performed for Reynolds number Re=UL/ν =1000. The computational domain covered the region of 

the cavity and also the region outside of the cavity, i.e., x ∊ (0, 1.707) and  y∊  (0, 0.707). Two mesh 

densities were used with 128x309 nodes and 256x618 nodes (the first numbers refer to the vertical 

direction). The number of nodes inside the cavity in the horizontal direction was equal to 181 for the 

coarse mesh and 362 for the refined mesh. In both the cases the solutions were smooth and there was 

no signs of oscillations or pronounced discontinuities near the boundaries. In the velocity or pressure 

field only very small wrinkles were observed. The velocity components in the nodes outside the cavity 

were of the order of 10
-2

 and maximum values occurred near the upper corners. As an example the 

‘figure 3’ shows the velocity modulus. It is seen that outside the boundaries the velocity is not exactly 

zero. In these nodes the velocity is artificially set to zero before the next time step begins. ‘Figure 4 

and 5’ show the comparisons of the horizontal and vertical velocity profiles along the lines A-B and 

C-D defined in ‘figure 2’.  The reference solution [19] presented in ‘figures 4 and 5’ was obtained 

with a very dense mesh with 513x513 nodes inside the cavity. As may be seen the present results 

obtained on the coarse mesh are far from the reference data, although the general flow behaviour is 

predicted relatively well. Increasing the number of nodes significantly improves the solution accuracy. 
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It is seen that on the denser mesh both velocity components are predicted very accurately and the 

present results almost perfectly match the literature data. Worth noting is that on the denser mesh the 

number of nodes inside the cavity is still smaller than in the computations performed in [19]. Excellent 

accuracy of the present solution is attributed to the high-order discretization method which turns out to 

compensate errors resulting from IB approach on the boundaries. 

 

 

Figure 2. Schematic view with streamline contours of the skewed cavity flow. 

3.2 Flow over a backward-facing step 

The computational domain for this test case is shown in ‘figure 6’. The length of the domain is 40h 

where h is the step height. The length of the step is 2h and in this region the velocity is forced to zero.  

The computations were performed for Re=Uh/ν=800 where U is the mean velocity at the inlet where 

the parabolic velocity profiles was prescribed with the maximum value equal to 1.5. Two 

computational meshes were used with 49x980 nodes and 75x1024 nodes. Unlike as in the previous 

example the results on these meshes were very similar, particularly further downstream the step. 

‘Figure 6’ presents the streamlines showing the locations of recirculation zones (RZ) at the upper and 

the lower wall of the channel. The length of the lower RZ is equal to 12h while the upper RZ extends 

over 9.5h-20.5h. A reference solution [20] was obtained using the mesh with 101x1000 nodes. In this 

case the length of the lower RZ was equal to 11.834h and the upper RZ was between 9.476-20.553 

which is very close to the values obtained presently.  

 

Figure 3. Modulus of the velocity field inside the skewed cavity flow. 
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Correctness of the results is further confirmed in comparisons of the horizontal velocity profiles 

extracted from the solutions at x=6h, x=14h and x=30h. These solutions are shown in ‘figures 7, 8 and 

9’. It is seen that the results obtained on both meshes are very close each other and also in very good 

agreement with the exemplary solutions. As in the previous example we connect this behaviour to 

high-order discretization method.       

   

 

Figure 6. Schematic view with streamline contours of backward facing step. 

 

 

Figure 7. Horizontal velocity profile at x=6h. 
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Figure 4. Horizontal velocity component 

along C-D line. 

 Figure 5.  Vertical velocity component along 

A-B line. 
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Figure 8. Horizontal velocity profile at x=14h. 

 

 

Figure 9. Horizontal velocity profile at x=30h. 

4. Conclusions             

The paper presented the validation of combination of the high-order compact discretisation with the 

immersed boundary method. The obtained results were smooth and did not show any signs of 

instability which could be expected due to the presence of the forcing term used in immersed boundary 

approach. The obtained solutions were in very good with literature data both for the case of the flow 

inside the skewed cavity as well as for the flow over the sharp step. Future works will concentrate on 

validation of the results for unsteady problems and 3D cases. 
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