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Abstract. The effect of a strong magnetic field on the temperature and velocity fields of
laminar flow was examined. The magnetizing force and gravity term were included in the
momentum conservation equation. Biot-Savart’s law was applied to obtain the distribution
of magnetic field. Three-dimensional computations were performed for straight pipe and pipe
with elbow. The single circular magnetic coil was oriented perpendicularly to the flow axis and
divided the straight pipe in two equal parts, while in the case of pipe with elbow was just at
the beginning of elbow.. The wall of the first straight part was adiabatic while the second was
isothermal. Half of the elbow was heated, while the reamining part was adiabatic. Various
boundary conditions were applied to estimate their influence on the velocity and temperature
distributions. Low entrance velocity, high wall temperature and strong magnetic field led
to deceleration of the flow in the central area, acceleration near the wall and formation of
recirculation zone in between for the straight pipe. Flow structure and temperature field in the
pipe with elbow were significantly modified by the magnetic force. Increasing entrance velocity
reduced influence of magnetic field, therefore the flow was less modified. High temperature
and magnetic induction resulted in significant changes of the velocity profile. The analysis was
conducted with an application of software with special user-defined function. The magnetic
field had an influence on the forced convection but its scale depended on the fluid and flow
properties, boundary conditions and magnetic field induction.

1. Introduction
All elements and ordinary substances show some magnetic effects, although very small ones –
a thousand to a million times less than the effects in ferromagnetic materials [1]. It has come
out that this small magnetism can be also utilized. Due to a development of superconducting
magnets, the strong magnetic field could be generated and the new interesting phenomena could
be discovered, for example: magnetic levitation of weakly magnetic substances, magnetic breath
support, magnetothermal wind, Wakayama jet, etc. [2] [3] [4] [5] [6] [7]. Magnetothermal wind
[6] was one of these new phenomena. It concerned appearance of wind in a partially heated tube
placed in the strong magnetic field. The warm air was expelled from the magnet while the cold
air was sucked into it.
The concept of introduction of convection showed new possibility of magnetic field utilization –
heat transfer enhancement, which is very important nowadays. Transfer of high heat fluxes and
better energy utilization are ones of the main engineering concerns. Therefore magnetothermal
convection in the closed enclosures was extensively studied afterwards. The experimental and
numerical investigations were carried out by [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]. They
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proved the influence of magnetic field on the natural convection of paramagnetic and diamagnetic
substances and their heat transfer. The magnetic convection from the engineering point of view
was presented in a book [18]. One of the chapters described the magnethothermal wind tunnel,
which connected the problem reported by [6] (appearance of magnetothermal wind) with the
classical Graetz problem [19], which referred to forced convection through a pipe with partially
heated wall. The Graetz problem was investigated by many researchers in various fields (due
to its usability) [20] [21] [22]. They analyzed also extended Graetz problem (with thermal
conduction) and problems with various boundary conditions.
The case studied by Ozoe [18] was a first example (found by Authors) of the magnetic field
influence on the forced convection of weakly magnetic substances. The two-dimensional flow of
air was analyzed and the strong influence of magnetic field on it was found in the region close
to the magnetic coil. It resulted in higher values of Nusselt number. The presented paper is a
continuation of this problem. Authors undertake the matter of three-dimensional model with
variable parameters like the geometry, inlet velocity, wall temperature and magnetic induction.
It led to the detail description of flow in the region with significant influence of the magnetic
field.

2. Mathematical model
With basic assumptions including: incompressible flow, lack of additional mass source,
stationary, laminar, three-dimensional flow, the continuity equation may be represented by
following equation:

∇ · ~u = 0, (1)

where: ~u - velocity m/s.
Employing conditions presented above complemented with the gravitational and magnetic forces
(5) treated as the external body forces led to the momentum equation in following form:

ρ (~u · ∇~u) = −∇p+ µ∇2~u+ ~Fb, (2)

where ρ - density kg/m3, µ - dynamic viscosity Pa·s, p - pressure Pa, g - gravitational acceleration

m/s2, ~Fb = Fg +Fmag - body forces N/m3, Fg - gravitational force N/m3, Fmag - magnetic force
N/m3.
The following formula describes energy equation:

~u · ∇T =
λ

ρcp
∇T 2, (3)

where: T - temperature K, λ - thermal conductivity W/(m·K), ρ - density kg/m3, cp -
specific heat J/(kg·K), with following assumptions: viscous dissipation and species diffusion
are negligible, flow is steady, there is lack of external heat source.
In order to calculate the distribution of magnetic field around single circular coil, Biot-Savart’s
law was applied [23]:

~B =
µmi

4π

∮
c

d~s× ~r
|r|3

, (4)

where: ~B - magnetic induction vector T, µm - magnetic permeability H/m, i - current magnitude
A, d~s - infinitely small element of the coil m, r - radius of coil m, ~r - position vector m.
Placing examined flows of paramagnetic fluid in magnetic field described by above equation,
resulted in the flow being affected with a new kind of influence, known as the magnetic force.
This force was included in the Navier-Stokes equations as another external body force [24]:

~Fmag = −
(

1 +
1

T0β

)
χρβ (T − T0)

2µm
~∇B2, (5)
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where: T0 = (Tw + Tf )/2 - reference temperature K, Tw - wall temperature K, Tf - fluid
temperature K, β - volumetric thermal expansion coefficient K−1, χ - volumetric magnetic
susceptibility -.

3. Studied case and applied solutions

Figure 1. The schematic view of straigth pipe.

Figure 2. The schematic view of pipe with an elbow

The first studied geometries were circular straight three-dimensional ducts of diameter
d = 0, 04 m and l = 1 m. The straight pipe geometry is presented in figure 1. While studying the
presented data, reader’s attention should be given to the model’s orientation in the coordinate
system. The magnetic coil was set in XY plane, that was normal to Z-axis and it was origin of
the system. The plane containing the magnetic coil divided the pipe in two equal parts. The
wall of the first part was adiabatic while the second was isothermal.
The second studied geometry was pipe with an elbow of diameter de = 0.01 m. It consisted of
an inlet section of length lei = 0.1 m, an elbow section with external radius re = 0.015 m and
outlet section of length leo = 0.035 m. The magnetic coil was set just ahead of the elbow. The
wall of the elbow was divided in two isothermally heated parts, from now on known as variant
1 and variant 2. This geometry is schematically presented in figure 2.
The diameter of the coil was always twice that of a pipe. The parabolic velocity profile was
assumed at the inlet. Table 1 presents the thermophysical and magnetic properties of a fluid
used in calculations. The inlet fluid temperature was Tf = 300 K in all studied cases. At the
outlet pressure was assumed to be po = 101325 Pa.
The academic license software (GAMBIT 2.4 and Fluent 6.3) was used to generate the grid
and perform the numerical computations. The special user-defined function calculating the
distribution of magnetic force and three dimensional parabolic velocity profile were implemented
in the code.The grid consisted of 147400 wedge elements for the straight pipe and 186800 wedge
elements for pipe with elbow.
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Table 1. Thermophysical and magnetic properties of air.

density dynamic
viscosity

volumetric
thermal
expansion
coefficient

magnetic
suscepti-
bility

magnetic
perme-
ability

specific
heat

thermal
conduc-
tivity

ρ µ β χ µm cp λ

kg/m3 Pa· K−1 - H/m J/(kg·K) W/(m·K)

1.225 1.7894·10−5 3.33·10−3 3.77·10−7 4π·10−7 1006.43 2.42·10−2

4. Results and discussion
4.1. Analysis of inlet velocity influence on velocity and temperature distributions
In this numerical case the pipe of diameter d = 0.04 m and length l = 1 m was studied. The
analysis of inlet velocity influence on the velocity and temperature distributions was conducted
with constant magnitude of magnetic induction in the centre of the coil b0 = 8 T and constant
value of temperature of the wall Tw = 350 K. The varying parameter in this case was average
inlet velocity Uavg.
Figure 3 presents the influence of average inlet velocity on the velocity distribution in the
magnetic field. The degree of profile’s deformation against the profile in the flow without
magnetic field depended on examined parameter. Application of the lowest average inlet velocity
(0.2 m/s, Re = 547) resulted in appearing of the greatest deformation of parabolic velocity profile
(figure 3(a)).
While taking into account the highest average inlet velocity (figure 3(c)) these deformations are
minimal. The profiles remained parabolic on the whole examined cross section. The results
might be divided in two groups. First of them was the group of distorted velocity profiles and
contained cases of average inlet velocities of 0.2 m/s and 0.5 m/s (figure 3(a) and 3(b)). The
second group consisted of the one case remained, where the gentle flattening of the profile’s sides
near the electric coil and narrowing or tearing of the flow’s central area were the only expressions
of profiles’ change (figure 3(c)).
In the group of distorted velocity profiles the characteristic profile with three peaks could be
observed. However, it vanished in the case of Uavg = 0.5 m/s (Re = 1369). Behind the magnetic
coil the area of flow slowing down appeared.
Acceleration near the wall was caused by the magnetic force. It was compatible with the flow
direction. As the velocity increased, the magnetic force effect weakened, which was related to
thermal boundary layer narrowing.
The effect of flow suppression reduced while moving closer to the flow axis due to the drop of
temperature (and in consequence, value of temperature difference) and of magnetic induction
magnitude (caused by drifting away from electric coil) and what’s more important the magnetic
force from eq. (5).
The central area of each profile preserved parabolic shape (though the maximum velocity
magnitude decreased) and the greatest change took place beyond it.
No recirculation zone was observed in any of examined cases. Nonetheless, it could occur with
the increase of magnetic force acting on fluid or further decrease of average inlet velocity.

4.2. Analysis of wall temperature influence on velocity and temperature distributions
The analysis of wall temperature influence on the velocity and temperature distributions in the
pipe of diameter d = 0.04 m and length l = 1 m was conducted with constant magnitude of the
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Figure 3. Velocity contours obtained in the presence of magnetic field in the pipe of d = 0.04
m and l = 1 m with average inlet velocity of: (a) 0.2 m/s, (b) 0.5 m/s, (c) 0.8 m/s.

magnetic induction in the centre of the coil b0 = 8 T and constant value of the average inlet
velocity Uavg = 0.5 m/s (Re = 1369). The varying parameter was the temperature of the wall.
Figure 4 presents the influence of wall temperature variation on the velocity distributions in the
magnetic field.
According to eq. (5) increase of the wall temperature led to the increase of temperature difference
and indirectly to the increase of magnetic force. As in the previous case change of the magnetic
force direction could be observed in the form of local acceleration of the flow near the wall. The
modification of the parabolic velocity profile was connected with temperature of the wall. The
flow with temperature difference of ∆T = 5 [K] (figure 4(a)) behaved similarly to the flow with
high average inlet velocity (figure 3(c)). In this case only the narrowing of the central area (of
the highest velocity) of the flow could be reported. As the temperature increased this central
area became thinner and thinner until its complete tearing (figure 4(c)).
At the same time the development of the flow’s suppression proceeded, first near the wall and
thereafter closer to the Z axis. The enlarging of this area was the second sign of velocity profile’s
deformation behind the magnetic coil.
In discussed flows, as in previously presented cases, the acceleration of the fluid near the wall
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Figure 4. Velocity contours obtained in the presence of magnetic field in the pipe of d = 0.04
m and l = 1 m with temperature difference of: (a) 5 K, (b) 40 K, (c) 70 K.

caused by the magnetic force acting accordingly to flow basic direction appeared. Increase in
the temperature (causing greater change in velocity profile) delayed the returning to the basic
profile. Greater deformation required greater distance to return to the basic flow structure.

4.3. Analysis of magnetic induction influence on velocity and temperature distributions
The analysis of the magnetic induction in the centre of the coil influence on the velocity and
temperature distributions in the pipe of diameter d = 0.04 m and length l = 1 m was conducted
with constant value of the temperature difference between the flow inlet temperature and wall
temperature ∆T = 50 K and constant value of the average inlet velocity Uavg = 0.4 m/s (Re =
1095). The varying parameter was the magnetic induction in the centre of magnetic coil b0.
Figure 5 presents obtained velocity distributions dependent on varying parameter b0. As could
be seen in the previous cases, also here the increase of studied parameter led to the gradual
deformation of the velocity profile behind the magnetic coil in the form of narrowing of the flow
central area (figure 5(b)) and its tearing (figure 5(c)). These two signs were accompanied by the
deceleration zone, which at first appeared near the wall and then descended in the direction of
flow axis.
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Figure 5. Velocity contours obtained in the presence of magnetic field in the pipe of d = 0.04
m and l = 1 m with the magnetic induction in the centre of the coil of: (a) 1 T, (b) 5 T, (c) 10
T.

Connection between the increasing parameter b0 and returning distance to the basic parabolic
profile remained the same as in the previous subsection.
Figure 5(a) shows that the magnetic induction of magnitude b0 = 1 T didn’t generate the
magnetic force able to do any change of flow structure. Therefore, it could be assumed that
the critical value allowing the profile change was in the range between 1 T to 5 T (and actually
between 1 T to 2 T, but this data are skipped due to the lack of space available).
The similarity of results obtained with varying wall temperature and magnetic induction in the
centre of the magnetic coil led to conclusion that there should be a possibility of applying the
relations connecting these two effects. This conclusion is confirmed by eq.(5) where both the
temperature and magnetic induction appeared.

4.4. Analysis of the flow structure in the pipe with an elbow
The analysis of the flow structure in the pipe with an elbow was conducted with constant
magnitude of magnetic induction in the centre of the coil b0 = 10 T, constant value of the
temperature difference between the flow inlet temperature and wall temperature ∆T = 50 K
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and constant value of the average inlet velocity Uavg = 0.023 m/s (Re=16).
The distributions of velocity, temperature and magnetic force for the studied cases are presented
in figures 6 and 7. Very complex three-dimensional flow structure can be observed in these
figures. They show that velocity distribution as well as temperature distribution underwent
strong distortions. For both variants a strong acceleration zone near the heated wall can be
observed (figure 6(a) and 7(a)). It is connected with strong magnetic force influence in this area
(figures 6(d) and 7(d)). The velocity in this area is about six times higher than the average
inlet velocity. Aside from the acceleration zone, the deceleration zone can be also observed in
the elbow. The ratio of the area between these two zones depended on heated wall variant. For
variant 1 acceleration zone is much smaller than the deceleration zone. For variant 2 otherwise.
Furthermore, for variant 2 the beginning of returning of the velocity profile to parabolic one can
be seen.
The elbow is preluded by the ending fragment of inlet section, where for both variants vortex
structures appeared. The direction of the vortex was dependant on applied variant. For variant
1 it was counter-clockwise and for variant 2 it was clockwise.The deflection of the inlet parabolic
velocity profile occurred already on the section ahead of the above mentioned vortex structures.
Therefore, the range of magnetic force influence is greater than in the cases described in previous
subsections.
The specific temperature distribution (figures 6(c) and 7(c)) is caused by the general suppression

of the flow near the magnetic coil, which is especially related to the appearance of the vortex
structures. The direction of magnetic force acting can be changed after crossing the certain
temperature. This temperature, called reference temperature or T0 is an arithmetic mean of
inlet fluid temperature and the heated wall temperature. The serious distortion of temperature
distribution led to the explicit location of isotherm T0 = 5 K. The presence of this temperature
led to the appearance of reduced magnetic force zone, what can be observed in figures 6(c) and

Figure 6. Flow characteristics for variant 1: (a) velocity contours and vectors, (b) temperature
contours, (c) magnetic force contours, (d) magnetic force vectors.
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Figure 7. Flow characteristics for variant 2: (a) velocity contours and vectors, (b) temperature
contours, (c) magnetic force contours, (d) magnetic force vectors.

7(c). This effect is compatible with the eq.(5).

5. Summary
A topic of paramagnetic fluid (air) forced convection under the influence of magnetic field was
undertaken. It is an extension of problem analyzed by Ozoe in [18], whose results were very
interesting, therefore it was decided to study the problem in details. In this paper the three-
dimensional analysis of the air flow in two pipes of various diameter and with various boundary
conditions under the influence of magnetic field were presented together with the straight pipe
and elbow. The magnetic force acting on the paramagnetic fluid caused appearance of the
acceleration, deceleration and recirculation zones and caused changes in the velocity profile. The
complex three-dimensional flow structure could be obtained. It was shown that increasing inlet
velocity reduced influence of the magnetic field in opposite to the increasing wall temperature
or increasing magnetic induction, which magnified it. It was mentioned that all the parameters,
which were varied can be combined in one, which can quantitatively described their influence
on the forced convection. This topic will be continued in the next studies. Summarizing the all
presented data it can be said that the magnetic field had and influence on the forced convection.
However it is rather limited to the slow flows or high temperature differences and high values of
magnetic induction, but it should not be neglected. There are a lot of applications for example:
chemical industry, biology, medicine, porous media flow, for which the presented data are very
promising.
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