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Abstract. The simulations of flows in inhomogeneous media of various physical regimes 

leading to shock-bubble interactions were performed using a developed numerical code based 

on a multi-component flow model. The numerical method which considers interfaces 

represented by contact discontinuities as numerically diffused zones, has been applied to 

simulate compressible two-phase flows. The approach takes advantage of the inherent 

numerical diffusion present in solutions. The mathematical formulation of the presented 

method is obtained after an averaging process of the single phase Navier-Stokes equations and 

contains the non-conservative equations and non-conservative terms that exist in the model to 

fulfill the interface condition. The finite volume Godunov-type computational technique, 

equipped with an approximate Riemann solver for calculating fluxes, is applied to simulate 

flows in two space dimensions. The approach accounts for pressure non-equilibrium. It 

resolves interfaces separating compressible fluids and captures the baroclinic source of 

vorticity generation. A numerically challenging shock bubble interaction problem is 

investigated to evaluate the effect of the Atwood number and shock wave intensity (various 

Mach numbers) on the interface evolution and vorticity generation. 

1. Introduction 

Many engineering processes and systems involve the dynamics of high speed compressible multiphase 

flows. Good examples of such flows with significant density variations, are the supersonic combustion 

in aircraft engines [1] and the inertial confinement fusion (ICF) [2], [3]. The flow pattern is diverse 

and the dynamical interactions of phases separated by a free surface significantly complicate the 

mathematical description of the inherently multi-component flow problem. The propagation of a shock 

wave through this type of inhomogeneous media leads to baroclinic vorticity generation and the 

development of the Richtmyer-Meshkov instability (RMI) [4]. This hydrodynamic instability grows 

nonlinearly and subsequently shows transition to turbulence without any wall effects. Vorticity 

generation is proportional to the misalignment between the density gradient at the fluid interface and 

induced upstream-directed pressure gradients related to a shock wave. 

 Numerous experiments have been carried out to investigate the initial stages of this process. The 

interaction of a planar shock wave with a single spherical or cylindrical bubble has been a typical 

experimental setup chosen to study the interface perturbation and deformation. The studies have been 

performed using shadowgraph diagnostic techniques as in the work of Haas & Sturtevant [5] and the 

series of experiments of Layes et al, see for example [6]. The other experiments applied modern laser 

technologies [7]. All these experiments allowed for better understanding of the mechanism of the 
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shock-bubble interaction and provided the reference data for computational studies, which have been 

performed using different mathematical models and numerical methods. 

 For the purpose of this study a diffuse interface approach has been developed to mathematically 

represent and numerically simulate flows with interfaces separating components of various density 

ratios. The method considers interfaces as numerically diffused zones, taking advantage of inherent 

numerical diffusion. This is in contrast to other approaches that consider interfaces between flow 

components as sharp non-smeared discontinuities, see for example [8]. The formulation is based on 

the model known, in its one-dimensional form, as the six-equation model of Saurel et al [9]. It was 

first derived by Kapila et al [10] from the generic model of Baer and Nunziato [11]. A brief 

introduction of the model as well as of the numerical method is provided in the next sections. This is 

followed by the general description of the mechanism of vorticity generation, the numerical results 

and conclusions. 

 

 

2. Multi-component flow model 

The original six equation model formerly derived by [10] in one dimensional space is now considered 

in two dimensional space. It consists of a statistical volume fraction equation, two continuity 

equations, mixture momentum equation in x and y direction and two energy equations. This model is 

characterized by two pressures attributed to each phase and a single velocity. It is therefore considered 

as a pressure non-equilibrium model, which requires further relaxation. Therefore, its solution 

discussed in  the following section is based on a predictor-corrector, Godunov-type method and a 

diffuse-interface approach for the material interfaces. The model for compressible flows without mass 

and heat transfer can be reduced to: 
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where αk, ρk, pk, ek, ρ, u, v and p are the volume fraction, the density, the pressure, the specific internal 

energy of the phase k, the mixture density, mixture velocity components and mixture pressure, 

respectively. The variable µ is a homogenization parameter controlling the rate at which the pressure 

tends towards equilibrium. An additional equation has been derived by [9] and considered in the 

numerical solution of the model (1) to eliminate the errors in the values of the thermodynamic 

variables due to the numerical approximation of the two non-conservative internal energy equations in 

the presence of shocks. This equation is obtained by summing up the two internal energy equations 

with mass and momentum equations and takes the following final form: 
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where the mixture total energy is given by: 
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The stiffened gas equation of state relates the thermodynamic variables and has the following form: 

  kkkkkk ep    1 ,
           

(4) 

where γk and πk are respectively the heat capacity ratio and the pressure constant for the phase k.The 

stiffened equation of state for the mixture can be written in the following compact form: 
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3. Numerical method 

The model (1) is hyperbolic but non-conservative, i.e. it cannot be written in the divergence form. 

Therefore the standard numerical methods developed for solving the hyperbolic conservation laws are 

not applied directly. In order to solve the model (1) the usual numerical procedure is to decompose the 

governing equations into hyperbolic and relaxation parts and solve them in succession of operations.  

The hyperbolic part of the model (1) can be rewritten as: 
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where the conserved variables U and the fluxes F(U) and G(U) are given in a vector form as: 
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The elements in the last row of the above vectors in (7) represent the additional equation of the total 

mixture energy (2). The hyperbolic part (6) is solved using a Godunov-type scheme. The explicit first-

order Godunov scheme can be written as: 
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Equation (8) is applied to the mass, momentum and total energy equations, where the superscript * in 

(8) refers to the state at cell boundaries. The discretisation of the non-conservative equation for the 

volume fraction is: 
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The non-conservative equations for the internal energy are discretised as follows: 
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In the present work the second order accuracy is achieved by using the MUSCL scheme. The HLL 

approximate Riemann solver is employed to calculate the numerical fluxes.  

 When the hyperbolic part of the solution algorithm is accomplished, the pressure is modified by 

relaxation solver based on the instantaneous pressure relaxation assumption, where the variable µ for 

this purpose is considered to be infinite. This part of the solution requires an iterative procedure to 

solve the ordinary differential equations containing the source terms of the original model (1): 
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The new value of pressure resulting in the updated value of the volume fraction and the mixture 

energy ρe calculated from (2) are used to obtain the mixture pressure from the mixture equation of 

state (5). The new pressure can be now used to update the internal energies for each constituent with 

the help of the corresponding equations of state.  

 

 

4. Mechanism of vorticity generation 

The acceleration of a gas bubble by a plane shock wave causes a number of complex phenomena such 

as bubble compression and acceleration, interface instabilities and vorticity generation. The main 

source of vorticity generation in such cases is the misalignment of the pressure and the density 

gradients, which is known as the baroclinic vorticity deposition. Figure 1 shows a schematic diagram 

of the possible scenarios when a planar shock wave propagating initially in air passes through a 

heavier or lighter cylindrical gas bubble. To explain the evolution of the vorticity field, it is convenient 

to consider Euler equations written in a vorticity transport form. In 2D form the equation is: 
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The only term of importance in the early stages of a shock-bubble interaction for which ω is initially 

equal to zero is the baroclinic torque (ρ × p). The misalignment of the local pressure and density 

gradients leads to the non-zero source term in equation (12). The baroclinic torque is the largest if the 

pressure gradient is perpendicular to the density gradient. Whereas, at the most upstream and 

downstream poles of the gas bubble, the baroclinic torque is equal to zero, owing to the collinearity of 

density and pressure gradients. The curvature of the shock wave front (the refracted shock wave) has 

also been used to build a theory behind the vorticity generation This mechanism is based on the 

conservation of the tangential velocity and the angular momentum across the shock wave as the 

compression only affects the motion normal to the shock surface (for details see [12] and [13]). 
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Figure 1. Schematic diagram demonstrating the baroclinic vorticity deposition in light/heavy (R1 < 

R2) and heavy/light (R1 > R2) shock-bubble interaction scenarios. R1 is the acoustic impedance of the 

air and R2 refers to the acoustic impedance of the bubble. 

 

 

5. Numerical results 

Numerical simulations of different scenarios of the interaction of a planar shock wave propagating in 

the ambient air and encountering a single circular bubble are conducted. Three air/bubble 

arrangements that represent heavy/light, equal density and light/heavy are considered. The 

configurations include air/krypton (Kr), air/nitrogen (N2) and air/helium (He), which represent 

negative, close to zero and positive Atwood number A respectively. The Atwood number is expressed 

in terms of density ratio as follows: 
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 sb

sbA
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
             (13) 

where, ρb and ρs are the densities of the gas filling the bubble and the surrounding medium 

respectively. The simulations consider shock waves of Mach numbers (M = 1.5, 1.7 and 2.0). The 

physical domain and the initial conditions are illustrated in figure 2 and tables 1 and 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic diagram of the initial state of shock-bubble interaction simulations. 

 

 

R1> R2 
Light bubble Heavy bubble 

ρ 
 

p 

ρ 

Post shock Post shock Initial state 

R1< R2 

Incident shock wave motion 

In
fl

o
w

 

O
u

tf
lo

w
 

H 

L 

Xo 

Air at high 

pressure 

Air at 

atmospheric 

pressure 

Wall 

Wall 

Shock wave A gas bubble at atmospheric pressure 

 Do 

XXI Fluid Mechanics Conference IOP Publishing
Journal of Physics: Conference Series 530 (2014) 012020 doi:10.1088/1742-6596/530/1/012020

5



 

 

 

 

 

 

Table 1. Initial conditions of air and different gas bubbles in the pre-shock chamber. 

Physical Property Air  He N2 Kr 

Density, kg/m
3
 1.29  0.167  1.25  3.506  

Pressure, Pa 101325  101325  101325  101325  

Horizontal velocity, m/s 0.0  0.0  0.0  0.0  

Vertical velocity, m/s 0.0  0.0  0.0  0.0  

Sound speed, m/s 332  1005  337  220  

Heat capacity ratio γ 1.4 1.67 1.4 1.67 

 

Table 2. Initial conditions of air in the post-shock chamber. 

Physical Property M = 1.5  M = 1.7 M = 2 

Density, kg/m
3
 2.4021  2.835 3.44  

Pressure, Pa 249091  324747 455963  

Horizontal velocity, m/s 230.28  374.55 414.5  

Heat capacity ratio, γ 1.4 1.4 1.4 

 

The characteristic dimensions of the domain as shown in figure 2 are: L = 30 cm, H = 8 cm, Xo = 5 cm 

and Do = 4 cm. The initial and boundary conditions of these computational cases reflect the 

experimental setup of Layes and Le Métayer [14]. The present computations were performed using 

1800 × 480 computational cells. The Schlieren images of the structures obtained in the experiment and 

computational simulations are in good agreement. Although it has to be remembered that the 

experiments involves a spherical bubble and the computational results are restricted to the cylindrical 

bubble. The results of the interface evolution as a function of time for the different air/gas bubble 

arrangements are shown in figure 3 for the M = 1.5.  

The left plots in figure 3 show the evolution of the Kr bubble interface. The initial Atwood number 

is 0.462 and this case represents light/heavy arrangement. After the planar shock wave impacts the Kr 

bubble, a refracted shock propagates inside the bubble, the outer parts of the incident shock propagate 

outside the bubble and a reflected shock propagates back towards the right side. The acoustic 

impedance inside the bubble is higher than the acoustic impedance outside (R2 > R1). This causes the 

refracted shock wave, inside the bubble to travel more slowly than the incident shock outside the 

bubble, figure 3 at time 47 µs. A sheet of positive vorticity along the upper surface and another sheet 

of negative vorticity along the lower surface correspond to the interface formed behind the shock 

wave. By the time 166 µs  the vortices on the top and bottom of the bubbles become more visible and 

a penetrating jet is formed at the downstream pole of the Kr bubble. As the time goes the vortical flow 

dominates the interface deformation process.  

The middle plots in figure 3 present the interaction of a planar shock wave with N2 bubble. The 

Atwood number in this case is close to zero and the difference in the acoustic impedance is small. In 

this case the speed difference of the refracted shock wave and the incident shock wave is small as it 

can be seen in figure 3. The N2 bubble undergoes a compression process, and the vorticity production 

in this case is negligible. 

The right plots in figure 3 show the snapshots of the interaction of a shock wave with the He 

bubble. The case represents an opposite scenario to the case of the Kr bubble. In this experiment the 

Atwood number is equal to -0.77 which is representative to the heavy/light arrangement. The shock 

wave hits the right interface of the He bubble causing a refracted shock wave to propagate inside the 

bubble faster than the incident shock wave outside the bubble, as a result of the acoustic impedance 
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misalignment (in this scenario R2 < R1). In this scenario a rarefaction wave reflects and propagates 

back towards the right side. The bubble interface deforms and a penetrating jet acting along the line of 

symmetry in the main flow direction is formed. The upstream pole of the bubble moves towards the 

downstream one and the bubble interface evolves into a kidney shape.The penetrating high velocity jet 

along the flow direction moves through the bubble forming symmetric patterns, figure 3. When the 

bubble deforms the associated flow field is subsequently split into two rings of vorticity.  

 

   

   

   

   

   
Figure 3. Numerical Schlieren images of the mixture density contours representing the interface 

evolution with respect to time for air/Kr (left), air/N2 (centre) and air/He (right) at M = 1.5. 

 

The intensity of the vortex rings in the cases of He and Kr bubbles is expressed by the total circulation 

Γ. The calculated values of the circulation in the symmetrical half of the computational domain with 

respect to time are represented in figure 4 for all Mach numbers considered.  The values of the 

circulation show that: if the Mach number increases the values of the circulation also increase and 

their growth rate during the shock-bubble interaction process is increased too. In the case of the 

relatively high absolute values of the Atwood number the vorticity generation becomes higher as well. 

 

  
Figure 4. Circulation time evolution of air/He (a) and air/Kr (b) constitutions for different shock 

wave celerities. 
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6. Conclusions 

Numerical simulations were performed to capture vorticity generation and the interface evolution in 

multi-component compressible flows. The study considered the effect of Atwood and Mach numbers 

on vorticity generation resulting from the interaction of a planar shock wave with a single cylindrical 

bubble. The constant Mach number comparison demonstrated that an increase of the Atwood number 

leads to a higher vorticity generation and its effect on the interface evolution becomes more 

pronounced. The constant Atwood number comparison proved that the flow with increasing Mach 

number produces higher circulation and vorticity generation. 
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